Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Study of Sabatier Reactor Operation in Zero “G”

1984-07-01
840936
The Sabatier reactor is an exothermic, heterogeneous catalytic reactor that has the function of reducing carbon dioxide to methane and water vapor. Sabatier reactor operation is affected by gravity through the effects of buoyant forces. The buoyant forces affect the transfer of heat and can be significant in determining the temperatures of the various portions of the reactor. The temperatures then affect the fundamental processes such as the chemical reaction rate. This paper presents the results of zero “G” computer model simulations of Sabatier reactor operation. Groundbase experiments were made for various manned loadings under normal ambient and gravity (l-G) conditions and were correlated with normal gravity simulations. The zero “G” simulations show the reactor will run significantly hotter in a zero “G” environment if cooling air flow is not increased to compensate for the loss of natural convections.
Technical Paper

Integrated Atmosphere Revitalization System Description and Test Results

1983-07-11
831110
Regenerative-type subsystems are being tested at JSC to provide atmosphere revitalization functions of oxygen supply and carbon dioxide (CO2) removal for a future Space Station. Oxygen is supplied by an electrolysis subsystem, developed by General Electric, Wilmington, Mass., which uses the product water from either the CO2 reduction subsystem or a water reclamation process. CO2 is removed and concentrated by an electrochemical process, developed by Life Systems, Inc., Cleveland, Ohio. The concentrated CO2 is reduced in a Sabatier process with the hydrogen from the electrolysis process to water and methane. This subsystem is developed by Hamilton Standard, Windsor Locks, Conn. These subsystems are being integrated into an atmosphere revitalization group. This paper describes the integrated test configuration and the initial checkout test. The feasibility and design compatibility of these subsystems integrated into an air revitalization system is discussed.
Technical Paper

An Advanced Carbon Reactor Subsystem for Carbon Dioxide Reduction

1986-07-14
860995
Reduction of metabolic carbon dioxide is one of the essential steps in physiochemical air revitalization for long-duration manned space missions. Under contract with NASA Johnson Space Center, Hamilton Standard is developing an Advanced Carbon Reactor Subsystem (ACRS) to produce water and dense solid carbon from carbon dioxide and hydrogen. The ACRS essentially consists of a Sabatier Methanation Reactor (SMR) to reduce carbon dioxide with hydrogen to methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolyze methane to carbon and hydrogen. The hydrogen is recycled to the SMR, while the produce carbon is periodically removed from the CFR. The SMR is well-developed, while the CFR is under development. In this paper, the fundamentals of the SMR and CFR processes are presented and results of Breadboard CFR testing are reported.
Technical Paper

Initial Development and Performance Evaluation of a Process for Formation of Dense Carbon by Pyrolysis of Methane

1985-07-01
851342
Breathing oxygen supply for long-duration manned space missions such as the NASA Space Station may be generated by electrolysis of water produced by the reaction of metabolic carbon dioxide and hydrogen in a Sabatier Methanation Reactor (SMR). A Space Station probable restriction on venting of carbonaceous gases to space will require onboard management of SMR product methane. This may be accomplished via methane decomposition to hydrogen and carbon. The hydrogen could be recycled to the SMR and the carbon would be stored onboard. Under contract with the NASA Johnson Space Center (JSC), Hamilton Standard is currently developing a Carbon Formation Reactor (CFR) that decomposes methane to gaseous hydrogen and dense solid carbon via high temperature pyrolysis. In this paper, the fundamentals of methane pyrolysis to carbon are described and the results of CFR development efforts to date are presented.
X