Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

CO2 Processing and O2 Reclamation: Recent Technology Developments for the First Closed Loop in ECLSS

1994-06-01
941337
The longer human beings in closed habitats need to be supplied with life support functions, the more the closure of the ECLSS loops becomes a must. This is certainly valid for habitats in space, where a steady resupply of consumables from Earth is impossible due to excessive distances or prohibitive high cost, but it may apply in general to earthbound habitats as well, if for instance large submarines want to extend their diving time. In two harmonised programs for the two customers European and German Space Agency (ESA/ESTEC, DARA), Dornier is now in charge with the development of the technologies for the closure of the oxygen loop.
Technical Paper

The FAE Electrolyser Flight Experiment FAVORITE: Final Design and Pre-flight Ground Test Results

2005-07-11
2005-01-2809
FAVORITE (Fixed Alkaline Electrolyte Electrolyser Water Vapor Oxygen Reclamation In-flight Technology Demonstration Experiment) is an orbital flight experiment for a fixed alkaline electrolyte (FAE) electrolyser stack dedicated to generate oxygen and hydrogen out of water for life support and other applications. It was originally planned to fly in September 2003 on board the SpaceHab mission STS -118 with the space shuttle COLUMBIA flight ISS-13A.1, but after the tragic accident of COLUMBIA it was adapted to be launched with the unmanned Russian FOTON-M2 in May 2005. FAVORITE was therefore redesigned, manufactured and ground tested in 2004. This paper summarizes the pre-flight ground test results, reports on the lessons-learnt and gives an overview of the intended in-orbit and post-mission test program.
Technical Paper

Air Revitalisation System Demonstrator - Testing in Closed Chamber

2000-07-10
2000-01-2354
The development of the air revitalisation system ( AR) for a crewed spacecraft was initiated in 1985. The selected technical approach is a three-step process consisting of (1) a solid amine water steam desorption system to concentrate (the mainly) metabolically produced carbon dioxide(CO2) from the air (2) a Sabatier reactor to reduce the CO2 to water and methane (CH4) and (3) a fixed alkaline electrolyser to reclaim from the water the oxygen O2 for the crew. During 1996 / 1997 the AR system was successfully demonstrated on a laboratory scale configuration for a crew of three persons equivalent. During 1998 / 2000 the AR system was transformed into a rack-mounted so-called Air Revitalisation System Technology Demonstrator (ARSD) for ‘closed loop’ testing in a dedicated Closed Chamber, to demonstrate the readiness of the technology for a possible incorporation in the ISS enhancement programme.
Technical Paper

Air Revitalisation System Demonstrator Design and Test Results

1999-07-12
1999-01-1956
Since 1985 in a step by step approach an advanced air revitalisation system has been developed for a crewed spacecraft. The metabolically produced carbon dioxide is concentrated through a solid amine water steam desorp-tion system and reduced to water and methane in a so-called Sabatier reactor. The water is currently fed into a fixed alkaline electrolyser to reclaim the oxygen for the crew. However, also water from other sources may be used. The hydrogen is recycled into the Sabatier reactor. The present system handles methane as a waste product closing so far the oxygen loop only. The system has been already successfully demonstrated in a laboratory scale configuration for a crew of three persons in 1996/1997. This paper discusses the results of the current development phase in which the system is reconfigured to fit into an International Space Station payload rack (ISPR). For this purpose the complete system design has been reviewed and upgraded where necessary.
X