Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Microwave-Powered Thermal Regeneration of Sorbents for CO2, Water Vapor and Trace Organic Contaminants

1997-07-01
972430
Feasibility of the use of microwave heating to achieve fast and efficient thermal regeneration of sorbents for the removal of carbon dioxide, water vapor, and trace organics from contaminated air streams has been conclusively demonstrated. The use of microwave power offers several advantages, including: improved heat transfer, lower thermal losses, improved power utilization, and enhanced operational capabilities. During the initial research, the sorption and microwave-powered thermal desorption of acetone, trichloroethylene (TCE), carbon dioxide, and water vapor was studied at 2.45 GHz using a rectangular waveguide based test apparatus. Both activated carbon and Carbosieve S-III were identified as excellent microwave regenerable sorbents for use in the removal of airborne organics. Water loaded silica gel, Molecular Sieve 13X, and Molecular Sieve 5A were also effectively regenerated under microwave irradiation at this frequency.
Technical Paper

CO2 Controller for Plant Growth Chambers

1998-07-13
981805
A new technology for controlling the partial pressure of CO2 (pCO2) in a plant growth chamber (PGC) has been demonstrated. CO2 is gathered from the source atmosphere across a membrane gas exchanger and stored in an alkanolamine solution. The CO2 loading of the alkanolamine reservoir is monitored using specific conductance and controlled by the exposure time and temperature. The PGC pCO2 is maintained using a second membrane exchanger through which the alkanolamine circulates, absorbing or releasing CO2 to maintain equilibrium. The equilibrium pCO2 is determined by the CO2 loading and the temperature. Constant PGC feed pCO2 levels of roughly 1000 ppm have been maintained using sources with pCO2 both above and below this value.
Technical Paper

Catalytic Decomposition of Gaseous Byproducts from Primary Solid Waste Treatment Technologies

2008-06-29
2008-01-2053
Waste Management Systems (WMSs) designed for use aboard long-term spacecraft missions and within Lunar and planetary habitations must reduce volume and recover useful resources from solid wastes, as well as impart chemical and microbial stability to stored wastes. Many WMS processes produce high concentrations of toxic emissions that can periodically overwhelm Trace Contaminant Control Systems (TCCSs) designed to handle nominal atmospheric contaminants. A prototype Catalytic Oxidation System (COS) has been developed for this contingency, and when mated to different WMS processes, will treat these toxic emissions on an as-needed basis. The COS reactor utilizes a platinum and ruthenium bimetallic catalyst supported on mesoporous zirconia that is highly active and oxidizes at relatively low temperature a wide variety of volatile organic compounds (VOCs) and inorganic toxic emissions produced by WMS processes.
Technical Paper

Development and Testing of a Prototype Microwave Plasma Reactor for Hydrogen Recovery from Sabatier Waste Methane

2009-07-12
2009-01-2467
In the Sabatier reactor, oxygen is recovered (as water) by hydrogenation of carbon dioxide. One half of the reacted hydrogen is contained within the product water, the other half is used to form methane (CH4). Hydrogen resupply requirements for the oxygen recovery process can be minimized by reclamation of hydrogen from the methane waste. To this end, we have developed effective methods for the recovery of hydrogen from CH4 using a microwave plasma reactor. By selectively promoting the oligomerization reaction which forms hydrogen and acetylene, up to 75% of the waste hydrogen can be recovered in a manner which minimizes the carbon fouling and carbon build-up problems which drastically reduce the long-term viability of traditional methane pyrolysis methods using fixed bed and fluidized bed reactors.
Technical Paper

Catalytic Decomposition of Gaseous Byproducts from Primary Solid Waste Treatment Technologies

2006-07-17
2006-01-2128
Several solid waste management (SWM) systems currently under development for spacecraft deployment result in the production of a variety of toxic gaseous contaminants. Examples include the Plastic Melt Waste Compactor (PMWC) at NASA - Ames Research Center1, the Oxidation/Pyrolysis system at Advanced Fuel Research2, and the Microwave Powered Solid Waste Stabilization and Water Recovery (MWSWS&WR) System at UMPQUA Research Company (URC). The current International Space Station (ISS) airborne contaminant removal system, the Trace Contaminant Control Subassembly (TCCS), is designed to efficiently process nominal airborne contaminants in spacecraft cabin air. However, the TCCS has no capability to periodically process the highly concentrated toxic vapors of variable composition, which are generated during solid waste processing, without significant modifications.
Technical Paper

Development and Testing of a Microwave Powered Solid Waste Stabilization and Water Recovery System

2006-07-17
2006-01-2182
A Microwave Powered Solid Waste Stabilization and Water Recovery Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Using microwave power, water present in the solid waste is selectively and rapidly heated. Liquid phase water flashes to steam and superheats. Hot water and steam formed in the interior of waste particles create an environment that is lethal to bacteria, yeasts, molds, and viruses. Steam contacts exposed surfaces and provides an effective thermal kill of microbes, in a manner similar to that of an autoclave. Volatilized water vapor is recovered by condensation.
Technical Paper

Magnetically Assisted Gasification of Solid Wastes: Comparison of Reaction Strategies

2005-07-11
2005-01-3081
Gradient magnetically assisted fluidized bed (G-MAFB) methods are under development for the decomposition of solid waste materials in microgravity and hypogravity environments. The G-MAFB has been demonstrated in both laboratory and microgravity flight experiments. In this paper we summarize the results of gasification reactions conducted under a variety of conditions, including: combustion, pyrolysis (thermal decomposition), and steam reforming with and without oxygen addition. Wheat straw, representing a typical inedible plant biomass fraction, was chosen for this study because it is significantly more difficult to gasify than many other typical forms of solid waste such as food scraps, feces, and paper. In these experiments, major gasification products were quantified, including: ash, char, tar, carbon monoxide, carbon dioxide, methane, oxygen, and hydrogen.
Technical Paper

Magnetically Assisted Filtration of Solid Wastes: Laboratory and Flight Experiments

2005-07-11
2005-01-3082
Solid wastes can be separated from aqueous streams and concentrated by filtration in a magnetically assisted fluidized bed. In this work the filtration of solid waste materials using filter beds consisting of granular ferromagnetic media is demonstrated. The degree of bed consolidation (or conversely fluidization) is controlled by the application of magnetic forces. In the Magnetically Assisted Gasification (MAG) process, solids are first entrapped by filtration, and then fluidized and transferred to a high temperature reactor where they are thermally decomposed. The maximum particle loading for the filter bed is determined by the intergranular void space. Using magnetic methods, it is possible to manipulate the degree of compaction as the filtration progresses to increase the void space and thereby maximize the loading capacity and efficiency of the filter. This process is completely compatible with operation in microgravity and hypogravity.
Technical Paper

Magnetically Assisted Gasification of Solid Waste

1999-07-12
1999-01-2183
A variety of techniques, including supercritical water oxidation, fluidized bed combustion, and microwave incineration have been applied to the destruction of solid wastes produced in regenerative life support systems supporting long duration manned missions. Among potential problems which still deserve attention are the need for operation in a variety of gravitational environments, and the requirement for improved methods of presenting concentrated solids to the reactor. Significant improvements in these areas are made possible through employment of the magnetically assisted gasification process. In this paper, magnetic methods are described for manipulating the degree of consolidation or fluidization of granular ferromagnetic media, for application in a gravity independent three step solid waste destruction process.
X