Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Methane Pyrolysis Technology as Part of Life Support and ISRU Systems; Design Trade-Off Supported by Bread Boarding

2007-07-09
2007-01-3253
Astrium investigates Methane Pyrolysis in the perspective of long-duration exploration missions. In particular this process, which recovers Hydrogen from Methane, allows reaching the maximum closure level of the Air Revitalization System ARES. Past studies were reviewed in the light of today's technical advancement and a technology trade-off, supported by bread boarding, is performed. Current activities do concentrate on Critical technology selection and feasibility demonstration including bread boarding and testing, Methane Pyrolysis Assembly (MPA) operational interfaces with ARES Potential applications of MPA for other exploration capabilities, like in-situ resources utilization (Moon and Mars) The paper presents the achievements so far.
Technical Paper

Methane Pyrolysis Technology as Part of Life Support and ISRU Systems; Development Testing

2008-06-29
2008-01-2190
Astrium investigates Methane Pyrolysis in the perspective of long-duration exploration missions. In particular this process, which recovers Hydrogen from Methane, allows reaching the maximum closure level of the Air Revitalization System ARES, see figure 1. Past studies as presented in ref. /1/ had been reviewed in light of today's technical advancement and a technology trade-off, supported by bread boarding, resulting in the pre selection of the plasma technique to perform the Methane Pyrolysis. In parallel two methods for plasma provision are investigated: Direct Current Plasma, sustained by a discharge arc rotating in a nozzle to supply energy to the flowing through carrier gas. Micro Wave (MW) Plasma, sustained by a MW within a Quartz tube embedded in a MW resonator cuboid Study activities did concentrate on Development testing of pre selected plasma Pyrolysis technology.
Technical Paper

Methane Pyrolysis Technology as Part of Life Support and ISRU Systems; Design Trade-Off Supported by Breadboarding

2006-07-17
2006-01-2272
EADS SPACE Transportation investigates Methane Pyrolysis in the perspective of long-duration exploration missions. In particular this process, which recovers Hydrogen from Methane, allows reaching the maximum closure level of the Air Revitalization System ARES. Past studies are reviewed in the light of today's technical advancement and a technology trade-off, supported by breadboarding, is performed. Accordingly, current activities do concentrate on Critical technology selection and feasibility demonstration including breadboarding and testing, Methane Pyrolysis Assembly (MPA) operational interfaces with ARES Potential applications of MPA for other exploration capabilities, like in-situ resources utilization (Moon and Mars) The paper presents the achievements so far.
X