Refine Your Search

Topic

Author

Search Results

Journal Article

Modeling and Simulation of a Series Hybrid CNG Vehicle

2014-04-01
2014-01-1802
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset.
Technical Paper

Neural Network Design of Control-Oriented Autoignition Model for Spark Assisted Compression Ignition Engines

2021-09-05
2021-24-0030
Substantial fuel economy improvements for light-duty automotive engines demand novel combustion strategies. Low temperature combustion (LTC) demonstrates potential for significant fuel efficiency improvement; however, control complexity is an impediment for real-world transient operation. Spark-assisted compression ignition (SACI) is an LTC strategy that applies a deflagration flame to generate sufficient energy to trigger autoignition in the remaining charge. Operating a practical engine with SACI combustion is a key modeling and control challenge. Current models are not sufficient for control-oriented work such as calibration optimization, transient control strategy development, and real-time control. This work describes the process and results of developing a fast-running control-oriented model for the autoignition phase of SACI combustion. A data-driven model is selected, specifically artificial neural networks (ANNs).
Journal Article

Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1253
The use of Low Pressure - Exhaust Gas Recirculation (EGR) is intended to allow displacement reduction in turbocharged gasoline engines and improve fuel economy. Low Pressure EGR designs have an advantage over High Pressure configurations since they interfere less with turbocharger efficiency and improve the uniformity of air-EGR mixing in the engine. In this research, Low Pressure (LP) cooled EGR is evaluated on a turbocharged direct injection gasoline engine with variable valve timing using both simulation and experimental results. First, a model-based calibration study is conducted using simulation tools to identify fuel efficiency gains of LP EGR over the base calibration. The main sources of the efficiency improvement are then quantified individually, focusing on part-load de-throttling of the engine, heat loss reduction, knock mitigation as well as decreased high-load fuel enrichment through exhaust temperature reduction.
Journal Article

An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control

2016-04-05
2016-01-0310
The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
Journal Article

Control of a Thermoelectric Cooling System for Vehicle Components and Payloads - Theory and Test

2017-03-28
2017-01-0126
Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Journal Article

Model-Based Optimal Combustion Phasing Control Strategy for Spark Ignition Engines

2016-04-05
2016-01-0818
Combustion phasing of Spark Ignition (SI) engines is traditionally regulated with map-based spark timing (SPKT) control. The calibration time and effort of this feed forward SPKT control strategy becomes less favorable as the number of engine control actuators increases. This paper proposes a model based combustion phasing control frame work. The feed forward control law is obtained by real time numerical optimization utilizing a high-fidelity combustion model that is based on flame entrainment theory. An optimization routine identifies the SPKT which phases the combustion close to the target without violating combustion constraints of knock and excessive cycle-by-cycle covariance of indicated mean effective pressure (COV of IMEP). Cylinder pressure sensors are utilized to enable feedback control of combustion phasing. An Extended Kalman Filter (EKF) is applied to reject sensor noise and combustion variation from the cylinder pressure signal.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Journal Article

Impacts of Adding Photovoltaic Solar System On-Board to Internal Combustion Engine Vehicles Towards Meeting 2025 Fuel Economy CAFE Standards

2016-04-05
2016-01-1165
The challenge of meeting the Corporate Average Fuel Economy (CAFE) standards of 2025 has led to major developments in the transportation sector, among which is the attempt to utilize clean energy sources. To date, use of solar energy as an auxiliary source of on-board fuel has not been extensively investigated. This paper is the first study at undertaking a comprehensive analysis of using solar energy on-board by means of photovoltaic (PV) technologies to enhance automotive fuel economies, extend driving ranges, reduce greenhouse gas (GHG) emissions, and ensure better economic value of internal combustion engine (ICE) -based vehicles to meet CAFE standards though 2025. This paper details and compares various aspects of hybrid solar electric vehicles with conventional ICE vehicles.
Technical Paper

A Finite Element Design Study and Performance Evaluation of an Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Vehicle Door Assembly

2020-04-14
2020-01-0203
The ever-growing concern to reduce the impact of transportation systems on environment has pushed automotive industry towards fuel-efficient and sustainable solutions. While several approaches have been used to improve fuel efficiency, the light-weighting of automobile components has proven broadly effective. A substantial effort is devoted to lightweighting body-in-white which contributes ~35% of total weight of vehicle. Closure systems, however, have been often overlooked. Closure systems are extremely important as they account for ~ 50% of structural mass and have a very diverse range of requirements, including crash safety, durability, strength, fit, finish, NVH, and weather sealing. To this end, a carbon fiber-reinforced thermoplastic composite door is being designed for an OEM’s mid-size SUV, that enables 42.5% weight reduction. In this work, several novel composite door assembly designs were developed by using an integrated design, analysis and optimization approach.
Technical Paper

Experimental Analysis of a Multiple Radiator Cooling System with Computer Controlled Flow Rates

2020-04-14
2020-01-0944
The automotive cooling system configuration has remained fixed for many decades with a large radiator plus fan, coolant pump, and bypass valve. To reduce cooling system power consumption, the introduction of multiple computer-controlled heat exchangers may offer some benefits. A paradigm shift from a single large radiator, sized for maximum load, to n-small radiators with individual flow control valves should allow fine tuning of the heat rejection needs to minimize power. In this project, a series of experimental scenarios featuring two identical parallel radiators have been studied for low thermal load engine cooling (e.g., idling) in ground transportation applications. For high thermal load scenarios using two radiators, the fans required between 1120 - 3600 W to maintain the system about the coolant reference temperature of 85oC.
Technical Paper

Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine

2021-09-05
2021-24-0096
In this work, a novel opposed piston architecture is proposed where one crankshaft rotates at twice the speed of the other. This results in one piston creating a 2-stroke profile and another with a 4-stroke profile. In this configuration, the slower piston operates in the 2-stroke CAD domain, while the faster piston completes 2 reciprocating cycles in the same amount of time (4-stroke). The key benefit of this cycle is that the 4-stroke piston increases the rate of compression and expansion (dV/dθ), which lowers the combustion-induced pressure rise rate after top dead center (crank angle location of minimum volume). Additionally, it lowers in-cylinder temperatures and pressures more rapidly, resulting in a lower residence time at high temperatures, which reduces residence time for thermal NOx formation and reduces the temperature differential between the gas and the wall, thereby reducing heat transfer.
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Technical Paper

Autoignition Characterization of Wet Isopropanol-n-Butanol-Ethanol Blends for ACI

2021-09-05
2021-24-0044
In this work, two blends of isopropanol, n-butanol, and ethanol (IBE) that can be produced by metabolically engineered clostridium acetobutylicum are studied experimentally in advanced compression ignition (ACI). This is done to determine whether these fuel blends have the right fuel properties to enable thermally stratified compression ignition, a stratified ACI strategy that using the cooling potential of single stage ignition fuels to control the heat release process. The first microorganism, ATCC824, produces a blend of 34.5% isopropanol, 60.1% n-butanol, and 5.4% ethanol, by mass. The second microorganism, BKM19, produces a blend of 12.3% isopropanol, 54.0% n-butanol, and 33.7% ethanol, by mass. The sensitivity of both IBE blends to intake pressure, intake temperature, and cylinder energy content (fueling rate) is characterized and compared to that of its neat constituents. Both IBE blends behaved similarly with a reactivity level between that of ethanol and n-butanol.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

Cooperative Mandatory Lane Change for Connected Vehicles on Signalized Intersection Roads

2020-04-14
2020-01-0889
This paper presents a hierarchical control architecture to coordinate a group of connected vehicles on signalized intersection roads, where vehicles are allowed to change lane to follow a prescribed path. The proposed hierarchical control strategy consists of two control levels: a high level controller at the intersection and a decentralized low level controller in each car. In the hierarchical control architecture, the centralized intersection controller estimates the target velocity for each approaching connected vehicle to avoid red light stop based on the signal phase and timing (SPAT) information. Each connected vehicle as a decentralized controller utilizes model predictive control (MPC) to track the target velocity in a fuel efficient manner. The main objective in this paper is to consider mandatory lane changes. As in the realistic scenarios, vehicles are not required to drive in single lane. More specifically, they more likely change their lanes prior to signals.
Technical Paper

A User Configurable Powertrain Controller with Open Software Management

2007-04-16
2007-01-1601
The emphasis on vehicle fuel economy and tailpipe emissions, coupled with a trend toward greater system functionally, has prompted automotive engineers to develop on-board control systems with increased requirements and complexity. Mainstream engine controllers regulate fuel, spark, and other subsystems using custom solutions that incorporate off-the-shelf hardware components. Although the digital processor core and the peripheral electronics may be similar, these controllers are targeted to fixed engine architectures which limit their flexibility across vehicle platforms. Moreover, additional software needs are emerging as electronics continue to permeate the ground transportation sector. Thus, automotive controllers will be required to assume increased responsibility while effectively communicating with distributed hardware modules.
Technical Paper

Modeling and Validation of Automotive “Smart” Thermal Management System Architectures

2004-03-08
2004-01-0048
The functionality and performance of an internal combustion (spark or compression ignition) engine's thermal management system can be significantly enhanced through the application of mechatronics technology. The replacement of the conventional thermostat valve and mechanical coolant pump in the heating/cooling system by a servo-motor driven smart valve and variable flow pump permits powertrain control module regulated coolant flow through the engine block and radiator. In this paper, a dynamic mathematical model will be created for a 4.6L spark ignition engine to analyze various thermal management system architectures. The designs to be studied include the factory configuration, a smart valve upgrade, and the smart valve combined with a variable flow pump and radiator fan. Representative results are presented and discussed to demonstrate improvements in the engine warm-up time, temperature tracking, and component power consumption.
Technical Paper

Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation

2001-03-05
2001-01-1014
The operation of internal combustion engines depend on the successful management of the fuel, spark, and cooling processes to ensure acceptable performance, emission levels, and fuel economy. Two different thermal management systems exist for engines - air and liquid cooling. Smaller displacement utility and spark ignition aircraft engines typically feature air cooled systems which rely on forced convection over the exterior engine surfaces. In contrast, passenger/light-duty engines use a water-ethylene glycol mixture which circulates through the radiator, water pump, and heater core. The regulation of the overall engine temperature, based on the coolant's temperature, has been achieved with the thermostat valve and (electric) radiator fan. To provide insight into the thermal behavior of the cylinder-head assembly for enhanced cooling system operation, a dynamic model must exist.
Technical Paper

Coolant Flow Control Strategies for Automotive Thermal Management Systems

2002-03-04
2002-01-0713
The automotive thermal management system is responsible for maintaining engine and passenger compartment temperatures, which promote normal combustion events and passenger comfort. This system traditionally circulates a water ethylene glycol mixture through the engine block using a belt-driven water pump, wax pellet thermostat valve, radiator with electric fan, and heater core. Although vehicle cooling system performance has been reliable and acceptable for many decades, advances in mechatronics have permitted upgrades to powertrain and chassis components. In a similar spirit, the introduction of a variable speed electric water pump and servo-motor thermostat valve allows ECU-based thermal control. This paper examines the integration of an electric water pump and intelligent thermostat valve to satisfy the engine's basic cooling requirements, minimize combustion chamber fluctuations due to engine speed changes, and permit quick heating of a cold block.
X