Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Impact of Hydrocarbons on the Dual (Oxidation and SCR) Functions of Ammonia Oxidation Catalysts

2014-04-01
2014-01-1536
Ammonia oxidation (AMOX) catalysts are critical parts of most diesel aftertreatment systems around the world. These catalysts are positioned downstream of selective catalytic reduction (SCR) catalysts and remove unreacted NH3 that passes through the SCR catalyst. In many configurations, the AMOX catalyst is situated after a diesel oxidation catalyst and catalyzed diesel particulate filter that oxidize CO and hydrocarbons. However, in Euro V and proposed Tier 4 final aftertreatment architectures there is no upstream oxidation catalyst. In this study, the impact of hydrocarbons is evaluated on two different types of AMOX catalysts. One has dual washcoat layers-SCR washcoat on top of PGM washcoat-and the other has only a PGM washcoat layer. Results are presented for NH3 and hydrocarbon oxidation, NOx and N2O selectivity, and hydrocarbon storage. The AMOX findings are rationalized in terms of their impact on the individual oxidation and SCR functions.
Journal Article

Conversion of Short-Chain Alkanes by Vanadium-Based and Cu/Zeolite SCR Catalysts

2016-04-05
2016-01-0913
The oxidation of short-chain alkanes, such as methane, ethane, and propane, from the exhaust of lean-burn natural gas and lean-burn dual-fuel (natural gas and diesel) engines poses a unique challenge to the exhaust aftertreatment community. Emissions of these species are currently regulated by the US Environmental Protection Agency (EPA) as either methane (Greenhouse Gas Emissions Standards) or non-methane hydrocarbon (NMHC). However, the complete catalytic oxidation of short-chain alkanes is challenging due to their thermodynamic stability. The present study focuses on the oxidation of short-chain alkanes by vanadium-based and Cu/zeolite selective catalytic reduction (SCR) catalysts, generally utilized to control NOx emissions from lean-burn engines. Results reveal that these catalysts are active for short-chain alkane oxidation, albeit, at conversions lower than those generally reported in the literature for Pd-based catalysts, typically used for short-chain alkane conversion.
Journal Article

Impact of Hydrothermal Aging on the Formation and Decomposition of Ammonium Nitrate on a Cu/zeolite SCR Catalyst

2017-03-28
2017-01-0946
Low-temperature (T ≤ 200°C) NOx conversion is receiving increasing research attention due to continued potential reductions in regulated NOx emissions from diesel engines. At these temperatures, ammonium salts (e.g., ammonium nitrate, ammonium (bi)sulfate, etc.) can form as a result of interactions between NH3 and NOx or SOx, respectively. The formation of these salts can reduce the availability of NH3 for NOx conversion, block active catalyst sites, and result in the formation of N2O, a regulated Greenhouse Gas (GHG). In this study, we investigate the effect of hydrothermal aging on the formation and decomposition of ammonium nitrate on a state-of-the-art Cu/zeolite selective catalytic reduction (SCR) catalyst. Reactor-based constant-temperature ammonium nitrate formation, temperature programmed oxidation (TPO), and NO titration experiments are used to characterize the effect of hydrothermal aging from 600 to 950°C.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Technical Paper

NO2 Formation and Mitigation in an Advanced Diesel Aftertreatment System

2018-04-03
2018-01-0651
Nitrogen dioxide (NO2) is known to pose a risk to human health and contributes to the formation of ground level ozone. In recognition of its human health implications, the American Conference of Governmental Industrial Hygienists (ACGIH) set a Threshold Limit Value (TLV) of 0.2 ppmv NO2 in 2012. For mobile sources, NO2 is regulated as a component of NOx (NO + NO2). In addition, the European Commission has indicated it is considering separate Euro 6 light-duty diesel and Euro VI heavy-duty diesel NO2 emissions limits likely to mitigate the formation of ground level ozone in urban areas. In this study, we conduct component-level reactor-based experiments to understand the effects that various aftertreatment catalyst technologies including diesel oxidation catalyst (DOC), diesel particulate filter (DPF), selective catalytic reduction (SCR) catalyst and ammonia oxidation (AMOX) catalyst have on the formation and mitigation of NO2 emissions.
Technical Paper

Effect of Hydrothermal Aging on the Catalytic Performance and Morphology of a Vanadia SCR Catalyst

2013-04-08
2013-01-1079
Titania supported vanadia catalysts have been widely used for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) in diesel exhaust aftertreatment systems. Vanadia SCR (V-SCR) catalysts are preferred for many applications because they have demonstrated advantages of catalytic activity for NOx removal and tolerance to sulfur poisoning. The primary shortcoming of V-SCR catalysts is their thermal durability. Degradation in NOx conversion is also related to aging conditions such as at high temperatures. In this study, the impact that short duration hydrothermal aging has on a state-of-the-art V-SCR catalyst was investigated by aging for 2 hr intervals with progressively increased temperatures from 525 to 700°C. The catalytic performance of this V-SCR catalyst upon aging was evaluated by three different reactions of NH₃ SCR, NH₃ oxidation, and NO oxidation under simulated diesel exhaust conditions from 170 to 500°C.
Technical Paper

Formation and Decomposition of Ammonium Nitrate on an Ammonia Oxidation Catalyst

2018-04-03
2018-01-0342
Achieving high NOx conversion at low-temperature (T ≤ 200 °C) is a topic of active research due to potential reductions in regulated NOx emissions from diesel engines. At these temperatures, ammonium nitrate may form as a result of interactions between NH3 and NO2. Ammonium nitrate formation can reduce the availability of NH3 for NOx conversion and block active catalyst sites. The thermal decomposition of ammonium nitrate may result in the formation of N2O, a regulated Greenhouse Gas (GHG). In this study, we investigate the formation and thermal and chemical decomposition of ammonium nitrate on a state-of-the-art dual-layer ammonia oxidation (AMOX) catalyst. Reactor-based constant-temperature ammonium nitrate formation, temperature programmed desorption (TPD), and NO titration experiments are used to characterize formation and decomposition.
Technical Paper

Low-Temperature NH3 Storage, Isothermal Desorption, Reactive Consumption, and Thermal Release from Cu-SSZ-13 and V2O5-WO3/TiO2 Selective Catalytic Reduction Catalysts

2019-04-02
2019-01-0735
Worldwide, regulations continue to drive reductions in brake-specific emissions of nitric oxide (NO) and nitrogen dioxide (NO2) from on-highway and nonroad diesel engines. NOx, formed as a byproduct of the combustion of fossil fuels (e.g., natural gas, gasoline, diesel, etc.), can be converted to dinitrogen (N2) through ammonia (NH3) selective catalytic reduction (SCR). In this study, we closely examine the low-temperature storage, isothermal desorption, reactive consumption, and thermal release of NH3 on commercial Cu-SSZ-13 and V2O5-WO3/TiO2 SCR catalysts. Catalyst core-reactor, N2 adsorption (BET) surface area, and in-situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) experiments are utilized to investigate the fundamental chemical processes relevant to low-temperature (T < 250°C) NH3 SCR.
Technical Paper

A Case Study of a Cu-SSZ-13 SCR Catalyst Poisoned by Real-World High Sulfur Diesel Fuel

2020-04-14
2020-01-1319
To meet increasingly stringent diesel engine emission regulations, diesel engines are required to use ultra-low sulfur diesel (ULSD) and are equipped with advanced aftertreatment systems. Cu-SSZ-13 zeolite catalysts are widely used as selective catalytic reduction (SCR) catalysts due to their high NOx reduction and excellent hydrothermal stability. However, active Cu sites of Cu-SSZ-13 catalysts can be poisoned by exposure to engine exhaust sulfur species. This poison effect can be mitigated with the use of ULSD and high temperature exposure from engine operation. On the other hand, ULSD is still not universally available where regulations require it, and vehicles may inadvertently operate with high sulfur diesel fuel (HSD) in some locations. The high concentration of exhaust sulfur species resulting from HSD combustion may rapidly poison the Cu-SSZ-13 SCR catalyst. In this study, the catalytic performance of a sulfur poisoned Cu-SSZ-13 SCR catalyst is analyzed.
Journal Article

Sulfur Poisoning of a Cu-SSZ-13 SCR Catalyst under Simulated Diesel Engine Operating Conditions

2021-04-06
2021-01-0576
Cu-SSZ-13 catalysts are widely used for diesel aftertreatment applications for NOx (NO and NO2) abatement via selective catalytic reaction (SCR) due to their high conversion efficiency and excellent hydrothermal stability. Diesel engine exhaust contains small amounts of SOx due to the combustion of sulfur compounds in diesel fuel. The engine out SOx level mainly depends on the sulfur content in the diesel fuel. The presence of SOx from engine exhaust can deteriorate the SCR performance of Cu-SSZ-13 catalysts in real-world applications. This work is focused on the sulfur-induced deactivation process of a Cu-SSZ-13 catalyst under a range of simulated diesel engine operating conditions. Two catalyst deactivation modes, namely chemical poisoning and physical poisoning, are identified, primarily depending on the operating temperature. Chemical poisoning mainly results from the interaction between SOx and Cu species within the zeolite framework.
Journal Article

Impact of Water Vapor on the Performance of a Cu-SSZ-13 Catalyst under Simulated Diesel Exhaust Conditions

2021-04-06
2021-01-0577
Cu-SSZ-13 selective catalytic reduction (SCR) catalysts are broadly applied in diesel aftertreatment systems for the catalytic conversion of oxides of nitrogen (NO + NO2). Diesel exhaust contains a wide range of water vapor concentrations depending on the operating condition. In this study, we evaluate the impact of water vapor on the relevant SCR catalytic functions including NOx conversion, NO oxidation, NH3 oxidation, and N2O formation under both standard and fast SCR conditions. Reactor-based experiments are conducted in the presence and absence of water vapor. Results indicate that water vapor can have both a positive and negative impact on low temperature NOx conversion for standard SCR reaction. At low inlet NOx concentrations, the presence of water vapor has a negative effect on NOx conversion, whereas, at high inlet NO concentrations, water vapor improves NOx conversion.
X