Refine Your Search

Topic

Search Results

Journal Article

A Spline-Based Modeling Algorithm for Application to Aerodynamic Shape Optimization Based on CFD Analysis

2017-03-28
2017-01-1510
In early phases of conceptual design stages for developing a new car in the modern automobile industry, the lack of systematic methodology to efficiently converge to an agreement between the aesthetics and aerodynamic performance tremendously increases budget and time. During these procedures, one of the most important tasks is to create geometric information which is versatilely morphable upon the demands of both of stylists and engineers. In this perspective, this paper proposes a Spline-based Modeling Algorithm (SMA) to implement into performing aerodynamic design optimization research based on CFD analysis. Once a 3-perspective schematic of a car is given, SMA regresses the backbone boundary lines by using optimum polynomial interpolation methods with the best goodness of fit, eventually reconstructing the 3D shape by linearly interpolating from the extracted boundaries minimizing loss of important geometric features.
Technical Paper

Two-Scale Command Shaping for Reducing NVH during Engine Shutdown

2020-04-14
2020-01-0411
Two-scale command shaping is a recently proposed feedforward control method aimed at mitigating undesirable vibrations in nonlinear systems. The TSCS strategy uses a scale separation to cancel oscillations arising from nonlinear behavior of the system, and command shaping of the remaining linear problem. One promising application of TSCS is in reducing engine restart and shutdown vibrations found in conventional and in hybrid electric vehicle powertrains equipped with start-stop features. The efficacy of the TSCS during internal combustion engine restart has been demonstrated theoretically and experimentally in the authors’ prior works. The present article presents simulation results and describes the verified experimental apparatus used to study TSCS as applied to the ICE shutdown case. The apparatus represents a typical HEV powertrain and consists of a 1.03 L three-cylinder diesel ICE coupled to a permanent magnet alternating current electric machine through a spur gear coupling.
Journal Article

Power-Split HEV Control Strategy Development with Refined Engine Transients

2012-04-16
2012-01-0629
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
Technical Paper

Lookie Here! Designing Directional User Indicators across Displays in Conditional Driving Automation

2020-04-14
2020-01-1201
With the advent of autonomous vehicles, the human driver’s attention will slowly be relinquished from the driving task. It will allow drivers to participate in more non-driving related activities, such as engaging with information and entertainment systems. However, the automated driving system would need to notify the driver of upcoming points-of-interest on the road when the driver’s attention is focused on their screen rather than on the road or driving display. In this paper, we investigated whether providing directional alerts for an upcoming point-of-interest (POI) in or around the user’s active screen can augment their ability in relocating their visual attention to the POI on the road when traveling in a vehicle with Conditional Driving Automation. A user study (N = 15) was conducted to compare solutions for alerts that presented themselves in the participants’ central and peripheral field of view.
Journal Article

Backward-Looking Simulation of the Toyota Prius and General Motors Two-Mode Power-Split HEV Powertrains

2011-04-12
2011-01-0948
This paper presents a comparative analysis of two different power-split hybrid-electric vehicle (HEV) powertrains using backward-looking simulations. Compared are the front-wheel drive (FWD) Toyota Hybrid System II (THS-II) and the FWD General Motors Allison Hybrid System II (GM AHS-II). The Toyota system employs a one-mode electrically variable transmission (EVT), while the GM system employs a two-mode EVT. Both powertrains are modeled with the same assumed mid-size sedan chassis parameters. Each design employs their native internal combustion (IC) engine because the transmission's characteristic ratios are designed for the respective brake specific fuel consumption (BSFC) maps. Due to the similarities (e.g., power, torque, displacement, and thermal efficiency) between the two IC engines, their fuel consumption and performance differences are neglected in this comparison.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Technical Paper

Active Anti-lock Brake System for Low Powered Vehicles Using Cable-Type Brakes

2010-04-12
2010-01-0076
This paper presents a study of the effects of anti-lock brakes on a vehicle with cable-type brakes with respect to stopping distance and vehicle control. While ABS is common on motorcycles and some hydraulic braking systems for mopeds, little research has been done on the use of anti-locks for low-powered vehicles using non-hydraulic brakes. A bicycle with cable-type brakes has been retrofitted with an active ABS. Experiments were carried out to compare the braking distance when the ABS was activated and deactivated. The study found that ABS did not sacrifice braking distance while improving vehicle control.
Technical Paper

Battery Modeling for HEV Simulation Model Development

2001-03-05
2001-01-0960
Battery modeling is of major concern for Hybrid Electric Vehicle (HEV) and Electric vehicle (EV) modeling. The major issue lies in characterizing the battery power output in relation to battery's State of Charge (SOC) in various application conditions. In particular, the challenge is associated with the difficulty that the characteristic parameters of the battery, i.e. the accurate data on the open circuit voltage and the internal resistance are hardly obtainable in practical conditions. In this paper, a battery capacity representation and a practical way of battery modeling is introduced for simulation model development based on the experimental data. A realistic way of battery SOC representation is generated from the battery output data. Empirical formulation is derived from the data to correlate the battery current, voltage output with the battery SOC.
Technical Paper

MODELING AND CONTROL OF TRANSIENT ENGINE CONDITIONS

2001-10-01
2001-01-3231
In gasoline direct injection engines, fuel is injected into the port walls and the valve. During the engine startup cycle, the temperature of these parts is not adequate to evaporate all the fuel that impacts the walls. As a result, a fraction of the injected fuel does not contribute to the combustion cycle. This fraction forms fuel puddles (wall-wetting) and a portion of it passes to the crankcase. The efficiency of the engine during the startup cycle is decreased and hydrocarbon emissions increased. It is obvious that a control strategy is necessary to minimize the effects of this transient performance of the engine. This paper investigates a modeling framework for the valve, and simulation results validate model performance when compared to available experimental data. The simulation studies lead to a conceptual control design, which is briefly outlined.
Journal Article

Kinematic Study of the GM Front-Wheel Drive Two-Mode Transmission and the Toyota Hybrid System THS-II Transmission

2011-04-12
2011-01-0876
General Motors has recently developed a front-wheel drive version of its two planetary two-mode transmission (2-MT) for a hybrid-electric vehicle powertrain [1]. This newer transmission includes two planetary gears with two transfer clutches and two braking clutches. With activation of designated pairs of these four clutches, four fixed-gear ratios between the transmission's input shaft and output shaft are obtained. In addition, activation of specific individual clutches gives two modes of operation whereby the IC engine speed is decoupled from the vehicle velocity thus providing an electrical continuously variable transmission (ECVT). This present paper extends the power-split analysis in [2] by deriving a safe-operating region (SOR) in the plane of IC engine speed vs. vehicle velocity for the four fixed-gear and two ECVT modes. This SOR is bounded by the speed limitations of the 2-MT components. Similar results are presented for the Toyota Hybrid System II (THS-II) transmission.
Technical Paper

Laser Ignition of Multi-Injection Gasoline Sprays

2011-04-12
2011-01-0659
Laser plasma ignition has been pursued by engine researchers as an alternative to electric spark-ignition systems, potentially offering benefits by avoiding quenching surfaces and extending breakdown limits at higher boost pressure and lower equivalence ratio. For this study, we demonstrate another potential benefit: the ability to control the timing of ignition with short, nanosecond pulses, thereby optimizing the type of mixture that burns in rapidly changing, stratified fuel-air mixtures. We study laser ignition at various timings during single and double injections at simulated gasoline engine conditions within a controlled, high-temperature, high-pressure vessel. Laser ignition is accomplished with a single low-energy (10 mJ), short duration (8 ns) Nd:YAG laser beam that is tightly focused (0.015 mm average measured 1/e₂ diameter) at a typical GDI spark plug location.
Technical Paper

Specification of a P3 Parallel Hybrid Electric Vehicle Architecture for the EcoCAR 3 Competition

2016-04-05
2016-01-1245
The Georgia Tech EcoCAR 3 team’s selection of a parallel hybrid electric vehicle (HEV) architecture for the EcoCAR 3 competition is presented in detail, with a focus on the team’s modeling and simulation efforts and how they informed the team’s architecture selection and subsequent component decisions. EcoCAR 3, sponsored by the United States Department of Energy and General Motors, is the latest in a series of Advanced Vehicle Technology Competitions (AVTCs) and features 16 universities from the United States and Canada competing to transform the 2016 Chevrolet Camaro into a hybrid electric American performance vehicle. Team vehicles will be scored on performance, emissions, fuel economy, consumer acceptability, and more over the course of the four-year competition. During the first year, the Georgia Tech team considered numerous component combinations and HEV architectures, including series RWD and AWD, parallel, and power-split.
Technical Paper

A Model for Water Consumption in Vehicle Use within Urban Regions

2011-04-12
2011-01-1152
The recent development of electric vehicles creates a new area of interest regarding their potential impacts on natural resource and energy networks. Water consumption is of particular interest, as water scarcity becomes a growing problem in many regions of the world. Water usage can be traced to the production of gasoline, as well as electricity, for regular operation of these vehicles. This paper focuses on the development of a framework to analyze the amount of water consumed in the operation of both conventional and electric vehicles. Using the Systems Modeling Language, a model was developed based on the water consumed directly in energy generation and processing as well as water consumed in obtaining and processing a vehicle's fuels. This model and framework will use the above water consumption breakdown to examine conventional and electric vehicles in metropolitan Atlanta to assess their impacts on that and other urban networks.
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Technical Paper

Exploration of Turbulent Atomization Mechanisms for Diesel Spray Simulations

2017-03-28
2017-01-0829
The atomization and initial spray formation processes in direct injection engines are not well understood due to the experimental and computational challenges associated with resolving these processes. Although different physical mechanisms, such as aerodynamic-induced instabilities and nozzle-generated turbulence and cavitation, have been proposed in the literature to describe these processes, direct validation of the theoretical basis of these models under engine-relevant conditions has not been possible to date. Recent developments in droplet sizing measurement techniques offer a new opportunity to evaluate droplet size distributions formed in the central and peripheral regions of the spray. There is therefore a need to understand how these measurements might be utilized to validate unobservable physics in the near nozzle-region.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Technical Paper

Environmental Implications of Recycling Scrap Tire Material into Ultra Fine Rubber Powder

2012-04-16
2012-01-1051
In this paper, we quantify several environmental benefits associated with using ultra fine scrap tire rubber powders in virgin and recycled rubber and plastics compounds. Specifically, we will analyze the savings in oil extraction and rubber production in comparison to the rubber powder production using cryogenic grinding. The analysis uses first hand factory data provided by a rubber powder producer. As will be shown, even though cryogenic nitrogen requires production and use of liquid nitrogen, there is still a net environmental benefit in terms of energy use and greenhouse gas emissions.
Technical Paper

Monitoring and Diagnostics for Electric Drivetrain Components in HEVs

2006-04-03
2006-01-1124
This paper presents monitoring and diagnostic techniques for drivetrain components in hybrid electric vehicles (HEVs). The particular focus of this work is the gear box of the drivetrain and mechanical faults of the electric motor. Permanent magnet motor magnet failures and rotor eccentricities are investigated and diagnosed. For induction motors, the presented mechanical fault cases are electrical rotor asymmetries (defective bars and end rings) and rotor eccentricities, as well. Apart from stationary operation, the presented techniques can also be applied to transient operating conditions. Measurement results are presented and discussed.
Technical Paper

The Integrated Electric Lifestyle: The Economic and Environmental Benefits of an Efficient Home-Vehicle System

2013-04-08
2013-01-0495
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
Technical Paper

An Analytic Foundation for the Toyota Prius THS-II Powertrain with a Comparison to a Strong Parallel Hybrid-Electric Powertrain

2006-04-03
2006-01-0666
Hybrid-electric powertrains for passenger vehicles and light trucks are generally being designed with two different configurations described as follows: The Toyota Hybrid System, THS-II, implemented in the 2004 Prius, the Lexus 400-H, and the Ford Hybrid Escape, is a power-split approach involving two electric machines and an internal combustion engine (ICE) mechanically coupled by a three-shaft planetary gear train. The second leading approach is a parallel hybrid-electric powertrain that generally includes a single electric machine and an ICE with a mating multi-ratio transmission. These parallel configurations are further divided as weak parallel and strong parallel. Honda uses a weak parallel powertrain in their Insight and Hybrid Civic. At Georgia Tech a strong (full), split-parallel hybrid powertrain has been implemented in a Ford Explorer. The vehicle is referred to as the Model GT.
X