Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Modeling and Simulation of a Series Hybrid CNG Vehicle

2014-04-01
2014-01-1802
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset.
Journal Article

Control of a Thermoelectric Cooling System for Vehicle Components and Payloads - Theory and Test

2017-03-28
2017-01-0126
Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
Technical Paper

Modeling and Control of Regenerative Braking System in Heavy Duty Hybrid Electrical Vehicles

2008-06-23
2008-01-1569
We consider the modeling and control design of the regenerative braking system for heavy duty hybrid electric vehicles (HEVs) which have an isolated air-over-hydraulic (AOH) brake system and a generator. A nonlinear model is set up to characterize the behavior of the brake system. Then, the brake control is formulated as a torque tracking problem according to the driver's operations. The AOH brake system is appointed to track a constant brake torque; meanwhile, the generator is designed to track the torque error between the desired braking torque and the torque output of the AOH brake system. Finally, numerical experiments are carried out to verify the proposed model and control algorithms.
Technical Paper

A Prognostic Based Control Framework for Hybrid Electric Vehicles

2022-03-29
2022-01-0352
Electrified transportation has received significant interest recently because of sustainable and clean energy goals. However, the degradation of electrical components such as energy storage systems raises system reliability and economic concerns. In this paper, a prognostic-based control strategy is proposed for hybrid electric vehicles (HEVs) to abate the degradation of energy systems. Degradation forecasting models of electrical components are developed to predict their degradation paths. The predicted results are then used to control HEVs in order to reduce the degradation of components.
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Technical Paper

Multi-Objective Finite Control Set Model Predictive Control for Interior Permanent Magnet Motors in Electric/Hybrid-Electric Vehicles

2022-03-29
2022-01-0357
This study proposes a multi-objective finite control set model predictive control (FCS-MPC) for traction motor drive systems in electric/hybrid-electric vehicles. The proposed method seeks to find the most optimal drive with respect to three objectives, i.e., electric power quality, inverter thermal cycling, and motor thermal cycling. Suitable lumped-parameter thermal models are used for the inverter and the motor based on validated methods in the literature to estimate temperatures. The estimated temperatures are integrated into the multi-objective control law to obtain the desired trade-off performances from the drive system. This paper shows that by adding inverter and motor thermal models into the FCS-MPC, thermal cycling can be reduced in the inverter and the motor while maintaining satisfying speed/torque requirements. The proposed methodology is tested via a standard driving schedule for an interior permanent magnet traction motor in a hybrid electric vehicle.
Technical Paper

Usefulness and Time Savings Metrics to Evaluate Adoption of Digital Twin Technology

2023-04-11
2023-01-0111
The application of virtual engineering methods can streamline the product design process through improved collaboration opportunities among the technical staff and facilitate additive manufacturing processes. A product digital twin can be created using the available computer-aided design and analytical mathematical models to numerically explore the current and future system performance based on operating cycles. The strategic decision to implement a digital twin is of interest to companies, whether the required financial and workforce resources will be worthwhile. In this paper, two metrics are introduced to assist management teams in evaluating the technology potential. The usefulness and time savings metrics will be presented with accompanying definitions. A case study highlights the usefulness metric for the “Deep Orange” prototype vehicle, an innovative off-road hybrid vehicle designed and fabricated at Clemson University.
Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

2019-01-15
2019-01-0079
Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
Technical Paper

An Online Degradation Forecasting and Abatement Framework for Hybrid Electric Vehicles

2021-04-06
2021-01-0161
The increasing electrification of vehicles raises system reliability concerns as the electrical and electronic components deteriorate faster after an event. In addition, the traditional method of scheduled maintenance is not efficient for managing a fleet of vehicles; because, the degradation processes are distinct in different vehicles. Therefore, integrating an online degradation forecasting and abatement module into a vehicle that is able to assess the vehicle status and predict the degradation process to take timely appropriate actions to reach satisfactory reliability and long-term goals, is valuable. Quantifying uncertainty is one of the main challenges of degradation forecasting; because, the degradation process of a vehicular system is distinct. This paper proposes an online degradation forecasting framework to predict the degradation processes to reallocate energy sources in the system, obtaining long-term goals while adhering to the reliability requirements.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

2019-04-02
2019-01-1208
Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
Technical Paper

Impact of Active Cooling on the Thermal Management of 3-Level NPC Converter for Hybrid Electric Vehicle Application

2023-10-31
2023-01-1684
The application of power electronic converters (PEC) in electric vehicles (EVs) has increased immensely as they provide enhanced controllability and flexibility to these vehicles. Accordingly, the interest in developing innovative and sustainable technologies to ensure safe and reliable operation of PECs has also risen. One of the most difficult challenges experienced during the development of reliable PECs is the design of proper thermal management systems for controlling the junction temperature and reducing the thermal cycling of power semiconductors. The addition of Active Thermal Control (ATC) can mitigate these concerns. Moreover, the performance of the thermal management system can be enhanced further by the integration of active cooling methods. An active cooling system consumes external energy for circulating cooling air or liquid within the PECs.
Technical Paper

An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test

2019-04-02
2019-01-1076
Enhanced electric motor performance in transportation vehicles can improve system reliability and durability over rigorous operating cycles. The design of innovative heat rejection strategies in electric motors can minimize cooling power consumption and associated noise generation while offering configuration flexibility. This study investigates an innovative electric motor cooling strategy through bench top thermal testing on an emulated electric motor. The system design includes passive (e.g., heat pipes) cooling as the primary heat rejection pathway with supplemental conventional cooling using a variable speed coolant pump and radiator fan(s). The integrated thermal structure, “cradle”, transfers heat from the motor shell towards an end plate for heat dissipation to the ambient surroundings or transmission to an external thermal bus to remote heat exchanger.
Journal Article

An Integrated Cooling System for Hybrid Electric Vehicle Motors: Design and Simulation

2018-04-03
2018-01-1108
Hybrid electric vehicles offer the advantages of reduced emissions and greater travel range in comparison to conventional and electric ground vehicles. Regardless of propulsion strategy, efficient cooling of electric motors remains an open challenge due to the operating cycles and ambient conditions. The onboard thermal management system must remove the generated heat so that the motors and other vehicle components operate within their designed temperature ranges. In this article, an integrated thermal structure, or cradle, is designed to efficiently transfer heat within the motor housing to the end plates for transmission to an external heat exchanger. A radial array of heat pipes function as an efficient thermal connector between the motor and heat connector, or thermal bus, depending on the configuration. Cooling performance has been evaluated for various driving cycles.
Technical Paper

Impact of Vehicle-to-Grid (V2G) on Battery Degradation in a Plug-in Hybrid Electric Vehicle

2024-04-09
2024-01-2000
Electric vehicles (EVs) are becoming increasingly recognized as an effective solution in the battle against climate change and reducing greenhouse gas emissions. Lithium-ion batteries have become the standard for energy storage in the automobile industry, widely used in EVs due to their superior characteristics compared to other batteries. The growing popularity of the Vehicle-to-grid (V2G) concept can be attributed to its surplus energy storage capacity, positive environmental impact, and the reliability and stability of the power grid. However, the increased utilization of the battery through these integrations can result in faster degradation and the need for replacement. As batteries are one of the most expensive components of EVs, the decision to deploy an EV in V2G operations may be uncertain due to the concerns of battery degradation from the owner’s perspective.
X