Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Vehicle Road Runoff and Return - Effect of Limited Steering Intervention

2011-04-12
2011-01-0583
Vehicle safety remains a significant concern for consumers, government agencies, and automotive manufacturers. One critical type of vehicle accident results from the right or left side tires leaving the road surface and then returning abruptly due to large steering wheel inputs (road runoff and return). A subset of runoff road crashes that involve a steep hard shoulder has been labeled shoulder induced accidents. In this paper, a limited authority real time steering controller has been developed to mitigate shoulder induced accidents. A Kalman Filter based tire cornering stiffness estimation technique has been coupled with a feedback controller and driver intention module to create a safer driving solution without excessive intervention. In numerical studies, lateral vehicle motion improvements of 30% were realized for steering intervention. Specifically, the vehicle crossed the centerline after 1.0 second in the baseline case versus 1.3 seconds with steering assistance at 60 kph.
Technical Paper

Cooperative Mandatory Lane Change for Connected Vehicles on Signalized Intersection Roads

2020-04-14
2020-01-0889
This paper presents a hierarchical control architecture to coordinate a group of connected vehicles on signalized intersection roads, where vehicles are allowed to change lane to follow a prescribed path. The proposed hierarchical control strategy consists of two control levels: a high level controller at the intersection and a decentralized low level controller in each car. In the hierarchical control architecture, the centralized intersection controller estimates the target velocity for each approaching connected vehicle to avoid red light stop based on the signal phase and timing (SPAT) information. Each connected vehicle as a decentralized controller utilizes model predictive control (MPC) to track the target velocity in a fuel efficient manner. The main objective in this paper is to consider mandatory lane changes. As in the realistic scenarios, vehicles are not required to drive in single lane. More specifically, they more likely change their lanes prior to signals.
Technical Paper

A Smart Jersey Highway Barrier with Portal for Small Animal Passage and Driver Alert

2013-04-08
2013-01-0620
Barriers are commonly used on roadways to separate and to protect against vehicles traveling in opposing directions from possible head-on collisions. However, these barriers may interfere with wildlife passage such that animals become trapped on the road. Typically, small animals cannot find safe passage across all traffic lanes due to the presence of solid barriers and eventually die after being hit by a vehicle. The occurrence of animal-to-vehicle collisions also presents a dangerous scenario for motorists as a driver may intuitively swerve to avoid hitting the animal. In this paper, a redesigned Jersey style barrier, named the Clemson smart portal, will be presented and discussed. This roadway barrier features a portal for small animal travel, along with a mechatronic-based warning system to notify drivers of animal passage.
Technical Paper

Robust Multi-Target Tracking Algorithm Based on Automotive Millimeter-Wave Radar

2018-08-07
2018-01-1601
Automotive radar can be used to detect pedestrians and vehicles and keep stable tracking of the targets. Multi-targets tracking is the key techniques when tracking in the complicated road condition. Some targets may lose alarm and there may be some false targets among the measurement because the radar would be affected seriously in the complicated road condition especially by the clutter and multipath effect. Tracking can solve the effect of the false targets to a certain extent and provide a stable and accurate state of the targets. How to associate the track and the measurement is important in multi-targets tracking system. A robust tracking algorithm using joint integrated probabilistic data association and interactive multi-model (JIPDA-IMM) is proposed. Unlike the nearest neighbor method, all the possible combinations of track measurement assignments are considered and the probabilities of the joint events are calculated.
Technical Paper

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

2019-04-02
2019-01-1077
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors.
Technical Paper

Internet of Autonomous Vehicles for The Distribution System of Smart Cities

2024-04-09
2024-01-2882
With the development of internet technology and autonomous vehicles (AVs), the multimodal transportation and distribution model based on AVs will be a typical application paradigm in the smart city scenario. Before AVs carry out logistics distribution, it is necessary to plan a reasonable distribution path based on each customer point, and this is also known as Vehicle Routing Problem (VRP). Unlike traditional VRP, the urban logistics distribution process based on multimodal transportation mode will use a set of different types of AVs, mainly including autonomous ground vehicles and unmanned aerial vehicles (UAVs). It is worth pointing out that there is currently no research on combining the planning of AVs distribution paths with the trajectory planning of UAVs. To address this issue, this article establishes a bilevel programming model. The upper-level model aims to plan the optimal delivery plan for AVs, while the lower-level model aims to plan a driving trajectory for UAVs.
X