Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Air Fuel Ratio Sensor and Its Signal Processing Module

1993-03-01
930232
This report describes the development of an air fuel ratio sensor with a linear voltage output, and its signal processing module that is able to calibrate the sensor output function on the measuring point of the 20.9% oxygen concentration in atmospheric air and the zero diffusion current at stoichiometry as the reference. This sensing system is effective when applied to air fuel ratio PID feed back engine control and it is able to realize the reduction of initial variability of sensors, interchangeability of sensors, and long term output change of the sensor.
Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1989

1989-02-01
890299
The detection range of an air-fuel ratio sensor is expanded in the rich A/F region. Using a simulation technique, the limiting cause of the detection range in the rich A/F region is identified as insufficient combustion rates of CO and H2 with O2 on the electrode, which prevent realization of a limited diffusion state which is necessary to detect the air-fuel ratio. Applying an improved diffusion layer to decrease the diffusion rates and an improved electrode to increase the combustion rates, it is demonstrated that the detection limit can be expanded to λ=0.6 while that of a conventional sensor is λ=0.8.
Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1986

1986-02-01
860409
The oxygen ion conductive solid electrolyte cell served as a device for measuring the combustibles content and the oxygen content of an exhaust gas. The cell is comprised of a tubular electrolyte, two opposed electrodes and a porous diffusion layer located on the outer electrode surface. The sensor is employed to measure both rich and lean air fuel ratio through the use of an electronic circuit pumping the oxygen ions to achieve a constant voltage between the electrodes. The wide range detecting capability makes it particularly attractive for air fuel ratio control applications associated with the internal combustion engine. The result of the performance tests are as follows, Detecting range (air excess ratio λ) : 0.8 - “∞ Step response time constant (63%) : 200ms Warm up time. - less than 80 sec at 20°C We found in the durability test concerned with the heat cycle and contamination that if initial aging treatment is applied the output variation ratio (. λ/λ) is limited with in : 5%.
X