Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Improved Thermal Efficiency Using Hydrous Ethanol Reforming in SI Engines

2013-09-08
2013-24-0118
The internal combustion engines waste large amounts of heat energy, which account for 60% of the fuel energy. If this heat energy could be converted to the output power of engines, their thermal efficiency could be improved. The thermal efficiency of the Otto cycle increases as the compression ratio and the ratio of specific heat increase. If high octane number fuel is used in engines, their thermal efficiency could be improved. Moreover, thermal efficiency could be improved further if fuel could be combusted in dilute condition. Therefore, exhaust heat recovery, high compression combustion, and lean combustion are important methods of improving the thermal efficiency of SI engines. These three methods could be combined by using hydrous ethanol as fuel. Exhaust heat can be recovered by the steam reforming of hydrous ethanol. The reformed gas including hydrogen can be combusted in dilute condition. In addition, it is cooled by directly injecting hydrous ethanol into the engine.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

1992-02-01
920239
An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

A State Adaptive Control Algorism for Vehicle Suspensions

1988-11-01
881769
This paper describes a state adaptive control method for vehicle suspensions proposed by Hitachi, Ltd. The objective of the control is to improve riding comfort and driving stability in reaction to road iregularities, exterior wind forces, and changes in vehicle loads as well as in reaction to inertial changes during cornering, breaking, and accelerating. The objective is attained by making considerable use of the relative displacement data between the body and the suspension. The state adaptive control system includes four shock absorbers whose damping forces can be tuned in three stages, four height sensors which measure the relative displacement, a vehicle speed sensor, and a microcomputer which decides the optimal damper stage. The validity of the proposed control method is shown through computer simulations and actual driving experiments. Vertical acceleration is reduced by about 55 % by switching from the soft damper to the hard damper in a computer simulation.
Technical Paper

Method for Determining Thermal Resistances in Coupled Simulator: For Electric Valve Timing Control System

2015-04-14
2015-01-1301
We developed a thermal calculation 1D simulator for an electric valve timing control system (VTC). A VTC can optimize the open and close timing of the intake and exhaust valves depending on the driving situation. Since a conventional VTC is driven hydraulically, the challenges are response speed and operation limit at low temperature. Our company has been developing an electric VTC for quick response and expansion of operating conditions. Currently, it is necessary to optimize the motor and reduction gear design to balance quicker response with downsizing. Therefore, a coupled simulator that can calculate electricity, mechanics, control, and thermo characteristics is required. In 1D simulation, a thermal network method is commonly used for thermal calculation. However, an electric VTC is attached to the end of a camshaft; therefore, determining thermal resistances is difficult. We propose a method of determining thermal resistances, using both theoretical and experimental approaches.
Technical Paper

Smooth Gear Shift Control Technology for Clutch-to-Clutch Shifting

1999-03-01
1999-01-1054
An automatic transmission without a one-way clutch for a small sized, light weight automatic transmission is presented. The factor of torque fluctuation occurrence during shifting of the transmission increases so that the shifting is executed by controlling two wet clutches electronically in place of the one-way clutch and the wet clutch. Therefore, it is necessary to develop a new smooth gear shift control technology for clutch-to-clutch shifting on an automatic transmission without a one-way clutch. The control technology has desirable clutch-to-clutch shift control, learning control and robust control which apply to accurate signals obtained by an observation method. Smooth shifts during clutch-to-clutch shifting can be realized by recognizing clutch change-over time using a calculated acceleration and an input/output speed ratio of the transmission.
Technical Paper

Evaluation of Parallel Executions on Multiple Virtual ECU Systems

2018-04-03
2018-01-0011
We have developed a cooperative simulation environment for multiple electronic control units (ECUs) including a parallel executions mechanism to improve the test efficiency of a system, which was designed with multiple ECUs for autonomous driving. And we have applied it to a power window system for multiple ECUs with a controller area network (CAN). The power window model consists of an electronic-mechanical model and a CPU model. Each simulator with a different executions speed operates in parallel using a synchronization mechanism that exchanges data outputted from each simulator at a constant cycle. A virtual ECU simulated microcontroller hardware operations and executed its control program step-by-step in binary code to test software for the product version. As co-simulation technology, a mechanism that synchronously executes heterogeneous simulators and a model of an in-vehicle communication CAN connecting each ECU were developed.
Technical Paper

Study on Mixture Formation and Ignition Process in Spark Ignition Engine Using Optical Combustion Sensor

1990-09-01
901712
Mixture formation and the ignition process in 4 cycle 4 cylinder spark ignition engines were investigated, using an optical combustion sensor that combines fiber optics with a conventional spark plug. The sensor consists of a 1-mm diameter quartz glass optical fiber cable inserted through the center of a spark plug. The tip of the fiber is machined into a convex shape to provide a 120-degree view of the combustion chamber interior. Light emitted by the spark discharge between spark electrodes and the combustion flames in the cylinder is transmitted by the optical cable to an opto-electric transducer. As a result, the ignition and combustion process which depends on the mixture formation can be easily monitored without installing transparent pistons and cylinders. This sensor can give more accurate information on mixture formation in the cylinders.
Technical Paper

An Accurate Torque-based Engine Control by Learning Correlation between Torque and Throttle Position

2008-04-14
2008-01-1015
In recent years, integrated vehicle control systems have been developed to improve fuel economy and safety. As a result, engine control is shifting to torque-based systems for throttle / fuel / ignition control, to realize an engine torque demand from the system. This paper describes torque-based engine control technologies for SI (Spark Ignition) engine to improve torque control accuracy using a feedback control algorithm and an airflow sensor.
Technical Paper

A New Engine Control System Using Direct Fuel Injection and Variable Valve Timing

1995-02-01
950973
A new engine drivetrain control system is described which can provide a higher gear ratio and leaner burning mixture and thus reduce the fuel consumption of spark ignition engines. Simulations were performed to obtain reduced torque fluctuation during changes in the air - fuel ratio and gear ratio, without increasing nitrogen oxide emissions, and with minimum throttle valve control. The results show that the new system does not require the frequent actuation of throttle valves because it uses direct fuel injection, which increases the air - fuel ratio of the lean burning limit. It also achieves a faster response in controlling the air mass in the cylinders. This results in the minimum excursion in the air - fuel ratio which in turn, reduces nitrogen oxide emissions.
Technical Paper

Effect of Spray Characteristics on Combustion in a Direct Injection Spark Ignition Engine

1998-02-23
980156
Meeting the future exhaust emission and fuel consumption standards for passenger cars will require refinements in how the combustion process is carried out in spark ignition engines. A direct injection system decrease fuel consumption under road load cruising conditions, and stratified charge of the fuel mixture is particularly effective for ultra lean combustion. On the other hands, there are requirements for higher output power of gasoline engines. A direct injection system for a spark ignition engine is seen as a promising technique to meet these requirements. To get higher output power at wide open throttle conditions, spray characteristics and in-cylinder air flow must be optimized. In this paper, the engine system, which has a side injection type engine and flat piston, was investigated. We tried some injectors, which have different spray characteristics, and examined effects of spray characteristics on combustion of the direct injection gasoline engine.
Technical Paper

Fractal Dimension Growth Model for SI Engine Combustion

2004-06-08
2004-01-1993
Time-resolved continuous images of wrinkling flame front cross-sections were acquired by a laser-light sheet technique in an optically accessible spark ignition engine. The test engine was operated at various engine speeds and compression ratios. The fractal dimension of the curve, D2, was measured in a time series for each cycle. Analysis of the data shows that as the flame propagates the fractal dimension, D2, is close to unity a short time after spark ignition and then increases. Examination of the relationship between the growth rate of the fractal dimension, ΔD2/Δt, and D2 reveals that the higher D2 is, the lower ΔD2/Δt becomes. An Empirical equation for ΔD2/Δt was derived as a function of the ratio of the turbulence intensity to the laminar burning velocity and pressure. This model was tested in an SI engine combustion simulation, and results compared favorably with experimental data.
Technical Paper

Development of High Pressure Fuel Pump by using Hydraulic Simulator

2005-04-11
2005-01-0099
We developed a high-pressure fuel pump for a direct injection gasoline engine and used a hydraulic simulator to design it. A single plunger design is the major trend for high-pressure fuel pumps because of its simple structure and small size. However, the single plunger causes large pressure pulsation and an unstable flow rate, especially at high engine speed. Therefore, a fuel-pipe layout that inhibits the pressure pulsation and a flow-rate control that stabilizes the flow are the most important challenges in pump design. Our newly developed hydraulic simulator can evaluate the dynamic characteristics of a total fuel supply system, which consists of pump, pipe, injector, and control logic. Using this simulator, we have improved fuel flow by optimizing the outlet check valve lift and the cam profile, and we reduced pressure pulsation by optimizing the layout of fuel pipes. Our simulation results agreed well with our experimental results.
Journal Article

Injection Quantity Range Enhancement by Using Current Waveform Control Technique for DI Gasoline Injector

2014-04-01
2014-01-1211
We have achieved injection quantity range enhancement by using the current waveform control technique for direct injection (DI) gasoline injectors. In this study, we developed an injection quantity simulator to find out the mechanism of non-linear characteristics. We clarified the non-linear production mechanism by using the simulator. This simulator is a one-dimensional simulator that incorporates calculation results from both unsteady electromagnetic field analysis and hydraulic flow analysis into the motion equation of this simulation code. We investigated the relation between armature and the injection quantity by using the simulator. As a result, we clarified that the non-linearity was produced by the bounce of the armature in the opening action. Thus, we found that it is effective to reduce the armature bounce to improve the linearity of the injection quantity characteristics.
Technical Paper

Model-Based Technique for Air-Intake-System Control Using Thermo-Fluid Dynamic Simulation of SI Engines and Multiple-Objective Optimization

2011-10-06
2011-28-0119
We have developed a model-based control for the air intake system in a variable valve engine, employing total engine simulation, the response surface method and multi-objective optimization scheme. In our technique, we performed the simulation model tuning and validation, followed by the creation of a dataset for the polynomial regression analysis of the charging efficiency. A D-optimal design, robust least squares method, and likelihood-ratio test were demonstrated to yield a robust and accurate control model. Coupling the total engine simulator with a genetic algorithm, model based calibration for optimal valve timing stored in lookup table was carried out under multiple objectives and restrictions. The reliability of the implementation control model, which considers the effect of gas dynamics in the intake system, was confirmed using a model-in-the-loop simulation.
Technical Paper

Transient Vibration Simulation of Motor Gearbox Assembly Driven by a PWM Inverter

2017-06-05
2017-01-1892
Predicting the vibration of a motor gearbox assembly driven by a PWM inverter in the early stages of development is demanding because the assembly is one of the dominant noise sources of electric vehicles (EVs). In this paper, we propose a simulation model that can predict the transient vibration excited by gear meshing, reaction force from the mount, and electromagnetic forces including the carrier frequency component of the inverter up to 10 kHz. By utilizing the techniques of structural model reduction and state space modeling, the proposed model can predict the vibration of assembly in the operating condition with a system level EV simulator. A verification test was conducted to compare the simulation results with the running test results of the EV.
Technical Paper

A Model-Based Technique for Spark Timing Control in an SI Engine Using Polynomial Regression Analysis

2009-04-20
2009-01-0933
Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation.
Technical Paper

Model-Based Methodology for Air Charge Estimation and Control in Turbocharged Engines

2013-04-08
2013-01-1754
The purpose of this study is to develop model-based methodologies which employ thermo-fluid dynamic engine simulation and multiple-objective optimization schemes for engine control and calibration, and to validate the reliability of the method using a dynamometer test. In our technique, creating a total engine system model begins by first entirely capturing the characteristics of the components affecting the engine system's behavior, then using experimental data to strictly adjust the tuning parameters in physical models. Engine outputs over the full range of engine operation conditions as determined by design of experiment (DOE) are simulated, followed by fitting the provided dataset using a nonlinear response surface model (RSM) to express the causal relationship among engine operational parameters, environmental factors and engine output. The RSM is applied to an L-jetronic® air-intake system control logic for a turbocharged engine.
X