Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Evaluating Drivers’ Preferences and Understanding of Powertrain and Advanced Driver Assistant Systems Symbols for Current and Future Vehicles

2020-04-14
2020-01-1203
With the dramatic increase in vehicle technology, the availability of a wide range of powertrains, and the development of advanced driver assistant systems (ADAS), instrument cluster interfaces have become more complex, increasing the demand on drivers. Understanding the needs and preferences of a diverse group of drivers is essential for the development of digital instrument cluster interfaces that improve driver’s understanding of critical information about the vehicle. This study investigated drivers’ understanding and preferences related to powertrain and ADAS symbols presented on instrument clusters. Participants answered questions that evaluated nine symbol’s comprehension, familiarity, and helpfulness. Then, participants were presented with information from the owner’s manual for each symbol and responded if the information changed their understanding of the symbol.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

A User-Centered Design Exploration of Fully Autonomous Vehicles’ Passenger Compartments for At-Risk Populations

2018-04-03
2018-01-1318
Autonomous vehicles have the potential to provide mobility to individuals who experience transportation disadvantages due to the inability to drive as a result of physical, cognitive or visual limitations/impairments as well as able-bodied individuals with no/limited desire to drive. Individuals who do not have easy access to transportation have social, academic, health, and career disadvantages in comparison to their peers. Fully autonomous vehicles have the potential to offer mobility solutions to these individuals. A user-centered design approach was utilized by a multidisciplinary team of engineers, human factors specialists, and designers to develop future vehicle features for a broad range of users.
Technical Paper

Student Concept Vehicle: Development and Usability of an Innovative Holographic User Interface Concept and a Novel Parking Assistance System Concept

2019-04-02
2019-01-0396
The Deep Orange program is a concept vehicle development program focused on providing hands-on experience in design, engineering, prototyping and production planning as part of students’ two-year MS graduate education. Throughout this project, the team was challenged to create innovative concepts during the ideation phase as part of building the running vehicle. This paper describes the usability studies performed on two of the vehicle concepts that require driver interaction. One concept is a human machine interface (HMI) that uses a holographic companion that can act as a concierge for all functions of the vehicle. After creating a prototype using existing technologies and developing a user interface controlled by hand gestures, a usability study was completed with older adults. The results suggest the input method was not intuitive. Participants demonstrated better performance with tasks using discrete hand motions in comparison to those that required continuous motions.
Journal Article

Opinions from Users Across the Lifespan about Fully Autonomous and Rideshare Vehicles with Associated Features

2023-04-11
2023-01-0673
Fully autonomous vehicles have the potential to fundamentally transform the future transportation system. While previous research has examined individuals’ perceptions towards fully autonomous vehicles, a complete understanding of attitudes and opinions across the lifespan is unknown. Therefore, individuals’ awareness, acceptance, and preferences towards autonomous vehicles were obtained from 75 participants through interviews with three diverse groups of participants: 20 automotive engineering graduate students who were building an autonomous concept vehicle, 21 non-technical adults, and 34 senior citizens. The results showed that regardless of age, an individual’s readiness to ride in a fully autonomous vehicle and the vehicle’s requirements were influenced by the users’ understanding of autonomous vehicles.
X