Refine Your Search

Topic

Author

Search Results

Journal Article

New Methodology for Transient Engine Rig Experiments for Efficient Parameter Tuning

2013-12-20
2013-01-9043
When performing catalyst modeling and parameter tuning it is desirable that the experimental data contain both transient and stationary points and can be generated over a short period of time. Here a method of creating such concentration transients for a full scale engine rig system is presented. The paper describes a valuable approach for changing the composition of engine exhaust gas going to a DOC (or potentially any other device) by conditioning the exhaust gas with an additional upstream DOC and/or SCR. By controlling the urea injection and the DOC bypass a wide range of exhaust compositions, not possible by only controlling the engine, could be achieved. This will improve the possibilities for parameter estimation for the modeling of the DOC.
Technical Paper

Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards

1998-02-23
980421
It has long been recognized that the key to achieving stringent emission standards such as ULEV is the control of cold-start hydrocarbons. This paper describes a new approach for achieving excellent cold-start hydrocarbon control. The most important component in the system is a catalyst that is highly active at ambient temperature for the exothermic CO oxidation reaction in an exhaust stream under net lean conditions. This catalyst has positive order kinetics with respect to CO for CO oxidation. Thus, as the concentration of CO in the exhaust is increased, the rate of this reaction is increased, resulting in a faster temperature rise over the catalyst.
Technical Paper

Diesel Fuel Desulfurization Filter

2007-04-16
2007-01-1428
The molecular filtration of sulfur components in ultra low sulfur diesel (ULSD) fuel is described. A comprehensive screening of potential sulfur removal chemistries has yielded a sorbent which has the capability to efficiently remove organo-sulfur components in ULSD fuel. This sorbent has been used to treat ULSD fuel on a heavy duty engine equipped with NOx adsorber after-treatment technology and has been shown to lengthen the time between desulfation steps for the NOx adsorber. The fuel properties, cetane number and aromatics content, etc., have not been changed by the removal of the sulfur in the fuel with the exception of the lubricity which is reduced.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Investigations into NOx Aftertreatment with Urea SCR for Light-Duty Diesel Vehicles

2001-09-24
2001-01-3624
Future US emissions limits are likely to mean a sophisticated nitrogen oxide (NOx) reduction technique is required for all vehicles with a diesel engine, which is likely to be either NOx trap or selective catalytic reduction (SCR) technology. To investigate the potential of SCR for NOx reduction on a light duty vehicle, a current model vehicle (EUII M1 calibration), of inertia weight 1810 kg, was equipped with an urea-based SCR injection system and non-vanadium, non-zeolitic SCR catalysts. To deal with carbon monoxide (CO), hydrocarbon (HC) and volatile organic fraction (VOF), a diesel oxidation catalyst was also incorporated into the system for most tests. Investigations into the effect of placing the oxidation catalyst at different positions in the system, changing the volume of the SCR catalysts, increasing system temperature through road load changes, varying the SCR catalyst composition, and changing the urea injection calibration are discussed.
Technical Paper

FTP and US06 Performance of Advanced High Cell Density Metallic Substrates as a Function of Varying Air/Fuel Modulation

2003-03-03
2003-01-0819
The influence of catalyst volume, cell density and precious metal loading on the catalyst efficiency were investigated to design a low cost catalyst system. In a first experiment the specific loading was kept constant for a 500cpsi and a 900cpsi substrate. In a second experiment the palladium loading was reduced on the 900cpsi substrate and the same PM loading was applied to a 1200cpsi substrate with lower volume. Finally the loading was further reduced for the 1200cpsi substrate. The following parameters were studied after aging: Catalyst performance of standard cell density compared to high cell density technology Light-off performance and catalyst efficiency as a function of Palladium loading and substrate cell density Catalyst efficiency as a function of AFR biasing The performance of the aged catalysts was investigated in a lambda sweep test and in light-off tests at an engine bench.
Technical Paper

Real World Study of Diesel Particulate Filter Ash Accumulation in Heavy-Duty Diesel Trucks

2006-10-16
2006-01-3257
In April 2003, a small field study was initiated to evaluate the effect of lube oil formulations on ash accumulation in heavy-duty diesel DPFs. Nine (9) Fuel Delivery Trucks were retrofitted with passive diesel particulate filters and fueled with ultra low sulfur diesel which contains less than 15 ppm sulfur. Each vehicle operated in the field for 18 months or approximately 160,000 miles (241,401 km) using one of three lube oil formulations. Ash accumulation was determined for each vehicle and compared between the three differing lube oil formulations. Ash analyses, used lube oil analysis and filter substrate evaluations were performed to provide a complete picture of DPF operations. The evaluation also examined some of the key parameters that allows for the successful implementation of the passive DPF in this heavy-duty application.
Technical Paper

Impact of SCR Activity on Soot Regeneration and the Converse Effects of Soot Regeneration on SCR Activity on a Vanadia-SCRF®

2018-04-03
2018-01-0962
The influence of SCR (selective catalytic reduction) activity on soot regeneration was investigated using engine test measurements with and without urea dosing on a vanadia-SCRF®1, also known as a vanadia SCR coated diesel particulate filter (V.SCR-DPF). The extent and rate of passive soot regeneration is significantly reduced in the presence of SCR activity especially at high temperatures (>250 °C). The reduction in soot regeneration is because some of the NO2, which would otherwise react with the soot, is consumed by SCR reactions and consequently the rate of soot regeneration is lower when urea is dosed. The converse effects of soot oxidation on SCR activity were studied separately by analysing steady-state light-off engine measurements with different initial soot loadings on the V.SCR-DPF. The measurements show an increase in NOX conversion with increasing soot loading.
Technical Paper

Effect of a Continuously Regenerating Diesel Particulate Filter on Non-Regulated Emissions and Particle Size Distribution

1998-02-23
980189
The reduction of particulate emissions from diesel engines is one of the most challenging problems associated with exhaust pollution control, second only to the control of NOx from any “lean burn” application. Particulate emissions can be controlled by adjustments to the combustion parameters of a diesel engine but these measures normally result in increased emissions of oxides of nitrogen. Diesel particulate filters (DPFs) hold out the prospect of substantially reducing regulated particulate emissions and the task of actually removing the particles from the exhaust gas has been solved by the development of effective filtration materials. The question of the reliable regeneration of these filters in situ, however, remains a difficult hurdle. Many of the solutions proposed to date suffer from high engineering complexity and/or high energy demand. In addition some have special disadvantages under certain operating conditions.
Technical Paper

A One-Dimensional Model for Square and Octo-Square Asymmetric Particulate Filters with Correct Description of the Channel and Wall Geometry

2018-04-03
2018-01-0951
Asymmetric particulate filters (PF), where the inlet channel is wider than the outlet channel, are commonly used because of their greater capacity for ash. Somewhat surprisingly, very few models for asymmetric PFs have been published and none of these gives a correct/detailed description of the geometry. For example, octahedral channels may be treated as if they were square or the tapering walls between the inlet and outlet channels treated as if they were rectangular in cross section. Alternatively, the equations may be presented in generic form in terms of channel cross-sectional areas and perimeters, but without giving any indication of how to calculate these. This paper aims to address these deficiencies with a model that correctly describes the geometry of square and octo-square asymmetric PFs. Expressions for the solid fraction of the PF (which affects thermal mass) and channel cross section and perimeter (both when clean and soot/ash loaded) are presented.
Technical Paper

Effect of Flow Distribution on Emissions Performance of Catalytic Converters

1998-02-23
980936
The emissions performance of catalytic converters under different conditions of flow distribution was investigated. Computational Fluid Dynamics methods were utilised to model the maldistribution effects of different inlet cones. The effects of maldistribution on ageing, light-off and conversion were investigated using steady state tests on an engine bench. Emission testing was also conducted on a vehicle throughout ECE and EUDC test cycles. Maldistribution was found to have a significant effect on the efficiency of the catalyst during the early stages of the ECE cycle for both fresh and aged catalysts. The effects were less significant over later stages of the ECE cycle and throughout the EUDC except NOx where maldistribution did have an effect on the conversion at higher flow rates during the later stages of the test.
Technical Paper

Evaluation of NOx Storage Catalysts as an Effective System for NOx Removal from the Exhaust Gas of Leanburn Gasoline Engines

1995-10-01
952490
One possibility to improve the fuel economy of SI-engines is to run the engine with a lean air-fuel-ratio (AFR). Hydrocarbon and carbon monoxide after-treatment has been proven under lean operation, but NOx-control remains a challenge to catalyst and car manufacturers. One strategy that is being considered is to run the engine lean with occasional operation at stoichiometry. This would be in conjunction with a three-way-catalyst (TWC) to achieve stoichiometric conversion of the three main pollutants in the normal way and a NOx trap. The NOx trap stores NOx under lean operation to be released and reduced under rich conditions. The trap also functions as a TWC and has good HC and CO conversion at both lean and stoichiometric AFR's. Under lean conditions NO is oxidised to NO2 on Pt which is then adsorbed on an oxide surface. Typical adsorbent materials include oxides of potassium, calcium, zirconium, strontium, lanthanum, cerium and barium.
Technical Paper

Optimisation of Precious Metal Loadings in Automotive Catalysts Using Response Surface Methodology

1996-10-01
961907
The effect of changing catalyst precious metal ratios and loadings on close coupled catalytic converter efficiencies has been studied. The three precious metals were platinum, palladium and rhodium. The specific matrix used for the development of response surface models is a central composite design and provides the capability of visually optimising the precious metal loadings. Catalysts were evaluated using perturbed scans. lightoff curves from the dynamometer aged, and vehicle emission tests. These scans show percent conversion efficiencies of the three legislated gases; HC, CO and NOx, over a range of Air Fuel Ratios (λ). Whilst lean and rich lightoff curves provide indications of conversion efficiencies at varying temperatures. Prior to testing the catalysts were aged, using an accelerated dynamometer ageing process, to 80K simulated kilometres. The catalysts were then fitted to a vehicle and chassis roll emission tests conducted.
Technical Paper

Field Test Trucks Fulfilling EPA'07 Emission Levels On-Road by Utilizing the Combined DPF and Urea-SCR System

2006-04-03
2006-01-0421
Two campaigns measuring on-road emissions of 23 VN-trucks on a randomly chosen driving cycle, consisting of 10 miles two-lane and 8 miles four-lane road were performed. The first, during October 2004, showed tailpipe NOx emissions on fleet average of 1.06 g/bhp-hr including the time the exhaust gas temperature was below 200°C. The second, during June 2005, showed tailpipe NOx emissions on fleet average of 1.13 g/bhp-hr including the time the exhaust gas temperature was below 200°C. Complementary measurements in a SET-cycle (13 point OICA-cycle) on a chassis dynamometer showed a tailpipe emission of 0.008 g PM per bhp-hr. Moreover, cost analysis show that the diesel fuel consumption remains unchanged whether the truck running on ULSD is equipped with a Combined Exhaust gas AfterTreatment System (CEATS) installed or not.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters

2004-10-25
2004-01-2959
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT™ diesel particulate filter. No engine modifications were made. Bench scale fuel-engine compatibility testing showed the GTL fuel had cold flow properties suitable for year-round use in southern California and was additized to meet current lubricity standards. Bench scale elastomer compatibility testing returned results similar to those of CARB specification diesel fuel. The GTL fuel met or exceeded ASTM D975 fuel properties. Researchers used a chassis dynamometer to test emissions over the City Suburban Heavy Vehicle Route (CSHVR) and New York City Bus (NYCB) cycles.
Technical Paper

Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter

2000-06-19
2000-01-1876
This paper reports the test results from the DPF (diesel particulate filter) portion of the DECSE (Diesel Emission Control - Sulfur Effects) Phase 1 test program. The DECSE program is a joint government and industry program to study the impact of diesel fuel sulfur level on aftertreatment devices. A systematic investigation was conducted to study the effects of diesel fuel sulfur level on (1) the emissions performance and (2) the regeneration behavior of a continuously regenerating diesel particulate filter and a catalyzed diesel particulate filter. The tests were conducted on a Caterpillar 3126 engine with nominal fuel sulfur levels of 3 parts per million (ppm), 30 ppm, 150 ppm and 350 ppm.
Technical Paper

Geometric Description of the Soot Cake in a One-Dimensional Model of an Octo-Square Asymmetric Particulate Filter

2019-04-02
2019-01-0991
Asymmetric particulate filters (PF), where the inlet channel is wider than the outlet channel, are commonly used because of their greater ash capacity. Surprisingly, very few models for asymmetric PFs have been published. This paper considers how to model the soot cake in octo-square asymmetric PFs. Some previous studies have neglected the octahedral shape of the inlet channel and instead assumed that the inlet channels were square. As the correct approach for modelling the soot cake is not obvious, three options are considered. The calculation of soot-loaded channel perimeter and hydraulic diameter (which are important for heat and mass transfer), soot thickness and backpressure as a function of soot loading are given for each geometry. In option 1, the shape of the soot-loaded channel is assumed to be geometrically similar to the soot-free channel.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
Technical Paper

Catalyst-Based BS VI Stage 2 Emission Control Solutions for Light Duty Diesel

2019-01-09
2019-26-0141
Various types of after-treatment system for BS VI Stage 1 are being assessed for the Light Duty Diesel (LDD) segment. For BS VI Stage 2, Real Driving Emission (RDE) assessment will be newly introduced, which will require more robustness in emission control system capability. Although the detailed requirements for India BS VI stage 2 are still being discussed, a reasonable assumption is that similar systems to those being developed for Euro 6d, will work for India BS VI. This paper describes typical system designs for Euro 6d and also reveals newly developed SCRF® (Selective Catalytic Reduction Filter) based systems, which demonstrate excellent RDE emissions. In addition, newly developed Lean NOx Trap (NSC) coatings, which focus on low temperature NOx control used with SCRF® (NSC + SCRF®) also show excellent emission control capability as demonstrated in this case on the ARTEMIS Cycle. These systems have potential as promising LDD solutions for India BS VI stage 2.
X