Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Handling Deviation for Autonomous Vehicles after Learning from Small Dataset

Learning only from a small set of examples remains a huge challenge in machine learning. Despite recent breakthroughs in the applications of neural networks, the applicability of these techniques has been limited by the requirement for large amounts of training data. What’s more, the standard supervised machine learning method does not provide a satisfactory solution for learning new concepts from little data. However, the ability to learn enough information from few samples has been demonstrated in humans. This suggests that humans may make use of prior knowledge of a previously learned model when learning new ones on a small amount of training examples. In the area of autonomous driving, the model learns to drive the vehicle with training data from humans, and most machine learning based control algorithms require training on very large datasets. Collecting and constructing training data set takes a huge amount of time and needs specific knowledge to gather relevant information.
Technical Paper

Teaching Autonomous Vehicles How to Drive under Sensing Exceptions by Human Driving Demonstrations

Autonomous driving technologies can provide better safety, comfort and efficiency for future transportation systems. Most research in this area has mainly been focused on developing sensing and control approaches to achieve various autonomous driving functions. Very little of this research, however, has studied how to efficiently handle sensing exceptions. A simple exception measured by any of the sensors may lead to failures in autonomous driving functions. The autonomous vehicles are then supposed to be sent back to manufacturers for repair, which takes both time and money. This paper introduces an efficient approach to make human drivers able to online teach autonomous vehicles to drive under sensing exceptions. A human-vehicle teaching-and-learning framework for autonomous driving is proposed and the human teaching and vehicle learning processes for handling sensing exceptions in autonomous vehicles are designed in detail.