Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Journal Article

Model-Based Optimal Combustion Phasing Control Strategy for Spark Ignition Engines

Combustion phasing of Spark Ignition (SI) engines is traditionally regulated with map-based spark timing (SPKT) control. The calibration time and effort of this feed forward SPKT control strategy becomes less favorable as the number of engine control actuators increases. This paper proposes a model based combustion phasing control frame work. The feed forward control law is obtained by real time numerical optimization utilizing a high-fidelity combustion model that is based on flame entrainment theory. An optimization routine identifies the SPKT which phases the combustion close to the target without violating combustion constraints of knock and excessive cycle-by-cycle covariance of indicated mean effective pressure (COV of IMEP). Cylinder pressure sensors are utilized to enable feedback control of combustion phasing. An Extended Kalman Filter (EKF) is applied to reject sensor noise and combustion variation from the cylinder pressure signal.
Technical Paper

Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines

Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to meet fuel economy, emissions, and performance targets. The response time variations between engine control actuators tend to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) has the potential to significantly reduce control calibration effort as compared to the current methodologies that are based on decentralized feedback control strategies. MPC strategies simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control, the engine model and optimization processes must be computationally efficient without sacrificing effectiveness. Most MPC systems intended for real-time control utilize a linearized model that can be quickly evaluated using a sub-optimal optimization methodology.
Technical Paper

Use of Machine Learning for Real-Time Non-Linear Model Predictive Engine Control

Non-linear model predictive engine control (nMPC) systems have the ability to reduce calibration effort while improving transient engine response. The main drawback of nMPC for engine control is the computational power required to realize real-time operation. Most of this computational power is spent linearizing the non-linear plant model at each time step. Additionally, the effectiveness of the nMPC system relies heavily on the accuracy of the model(s) used to predict the future system behavior, which can be difficult to model physically. This paper introduces a hybrid modeling approach for internal combustion engines that combines physics-based and machine learning techniques to generate accurate models that can be linearized with low computational power. This approach preserves the generalization and robustness of physics-based models, while maintaining high accuracy of data-driven models. Advantages of applying the proposed model with nMPC are discussed.
Technical Paper

A Review of Spark-Ignition Engine Air Charge Estimation Methods

Accurate in-cylinder air charge estimation is important for engine torque determination, controlling air-to-fuel ratio, and ensuring high after-treatment efficiency. Spark ignition (SI) engine technologies like variable valve timing (VVT) and exhaust gas recirculation (EGR) are applied to improve fuel economy and reduce pollutant emissions, but they increase the complexity of air charge estimation. Increased air-path complexity drives the need for cost effective solutions that produce high air mass prediction accuracy while minimizing sensor cost, computational effort, and calibration time. A large number of air charge estimation techniques have been developed using a range of sensors sets combined with empirical and/or physics-based models. This paper provides a technical review of research in this area, focused on SI engines.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Technical Paper

Control Optimization of a Charge Sustaining Hybrid Powertrain for Motorsports

The automotive industry is aggressively pursuing fuel efficiency improvements through hybridization of production vehicles, and there are an increasing number of racing series adopting similar architectures to maintain relevance with current passenger car trends. Hybrid powertrains offer both performance and fuel economy benefits in a motorsport setting, but they greatly increase control complexity and add additional degrees of freedom to the design optimization process. The increased complexity creates opportunity for performance gains, but simulation based tools are necessary since hybrid powertrain design and control strategies are closely coupled and their optimal interactions are not straightforward to predict. One optimization-related advantage that motorsports applications have over production vehicles is that the power demand of circuit racing has strong repeatability due to the nature of the track and the professional skill-level of the driver.
Technical Paper

Integrated Engine States Estimation Using Extended Kalman Filter and Disturbance Observer

Accurate estimation of engine state(s) is vital for engine control systems to achieve their designated objectives. The fusion of sensors can significantly improve the estimation results in terms of accuracy and precision. This paper investigates using an Extended Kalman Filter (EKF) to estimate engine state(s) for Spark Ignited (SI) engines with the external EGR system. The EKF combines air path sensors with cylinder pressure feedback through a control-oriented engine cycle domain model. The model integrates air path dynamics, torque generation, exhaust gas temperature, and residual gas mass. The EKF generates a cycle-based estimation of engine state(s) for model-based control algorithms, which is not the focus of this paper. The sensor and noise dynamics are analyzed and integrated into the EKF formulation. To account for ‘non-white’ disturbances including modeling errors and sensor/actuator offset, the EKF engine state(s) observer is augmented with disturbance state(s) estimation.