Refine Your Search

Topic

Author

Search Results

Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Journal Article

Transient Analysis of the Piston Temperature with Consideration of In-cylinder Phenomena Using Engine Measurement and Heat Transfer Simulation Coupled with Three-dimensional Combustion Simulation

2009-04-20
2009-01-0187
This study examined a method of predicting the piston temperature in reciprocating internal combustion engines with the aim of developing lightweight pistons. Since the piston temperature is strongly affected by the in-cylinder temperature distribution and turbulence, it is necessary to consider the effects of flame propagation, cooling by the intake air, temperature rise due to combustion, in-cylinder flow and the combustion chamber shape. A three-dimensional combustion simulation that can take these effects into consideration was run to calculate the heat transfer coefficient from the piston crown surface and the gas temperature. The results were used as the boundary conditions for an analysis of heat transfer from the piston, and a method was thus developed for analyzing the piston temperature.
Journal Article

Development of a New Metal Substrate for Lean NOx Trap

2008-04-14
2008-01-0806
This paper presents a new substrate for Lean NOx Traps (LNT) which enables high NOx conversion efficiency, even after long-term aging, when using alkali metals as the NOx adsorber. When a conventional metal honeycomb is used as the LNT substrate, the chromium in the metal substrate migrates into the washcoat and reacts with the alkali metals after thermal aging. In order to help prevent this migration, we have developed a new substrate where a fine -alumina barrier is precipitated to the surface of the metal substrate. The new substrate is highly capable of preventing migration of chromium into the washcoat and greatly enhances the NOx conversion. The durability of the new substrate and emission test using a test vehicle are also examined.
Technical Paper

An Adaptive Engine Control Algorithm for Acceleration Response

1991-02-01
910256
Chassis back and forth oscillation caused by sudden engine torque increase tends to occur, according to the characteristic of vehicle dynamics. This oscillation is called an acceleration surge and gives a vehicle driver a feeling of discomfort. This paper provides two control methods which can change the characteristic of vehicle acceleration response in order to suppress acceleration surge and to macth with driver's preference. The first control method is an acceleration servo method which is composed of control reference model and ignition timing control. The second control method is a variable response characteristic control algorithm. We treat the controlled object as the second order model with time delay, and assign the characteristic roots of transfer function in order to obtain the desired response.
Technical Paper

Computer-Aided Calibration Methodology for Spark Advance Control Using Engine Cycle Simulation and Polynomial Regression Analysis

2007-10-29
2007-01-4023
The increasing number of controllable parameters in modern engine systems has led to increasingly complicated and enlarged engine control software. This in turn has created dramatic increases in software development time and cost. Model-based control design seems to be an effective way to reduce development time and costs and also to enable engineers to understand the complex relationship between the many controllable parameters and engine performance. In the present study, we have developed model-based methodologies for the engine calibration process, employing engine cycle simulation and regression analysis. The reliability of the proposed method was investigated by validating the regression model predictions with measured data.
Technical Paper

Effect of Spray Characteristics on Combustion in a Direct Injection Spark Ignition Engine

1998-02-23
980156
Meeting the future exhaust emission and fuel consumption standards for passenger cars will require refinements in how the combustion process is carried out in spark ignition engines. A direct injection system decrease fuel consumption under road load cruising conditions, and stratified charge of the fuel mixture is particularly effective for ultra lean combustion. On the other hands, there are requirements for higher output power of gasoline engines. A direct injection system for a spark ignition engine is seen as a promising technique to meet these requirements. To get higher output power at wide open throttle conditions, spray characteristics and in-cylinder air flow must be optimized. In this paper, the engine system, which has a side injection type engine and flat piston, was investigated. We tried some injectors, which have different spray characteristics, and examined effects of spray characteristics on combustion of the direct injection gasoline engine.
Technical Paper

Study on Mixture Formation and Ignition Process in Spark Ignition Engine Using Optical Combustion Sensor

1990-09-01
901712
Mixture formation and the ignition process in 4 cycle 4 cylinder spark ignition engines were investigated, using an optical combustion sensor that combines fiber optics with a conventional spark plug. The sensor consists of a 1-mm diameter quartz glass optical fiber cable inserted through the center of a spark plug. The tip of the fiber is machined into a convex shape to provide a 120-degree view of the combustion chamber interior. Light emitted by the spark discharge between spark electrodes and the combustion flames in the cylinder is transmitted by the optical cable to an opto-electric transducer. As a result, the ignition and combustion process which depends on the mixture formation can be easily monitored without installing transparent pistons and cylinders. This sensor can give more accurate information on mixture formation in the cylinders.
Technical Paper

CPU Model-based Hardware/Software Co-design for Real-Time Embedded Control Systems

2007-04-16
2007-01-0776
This paper proposes a new development method for highly reliable real-time embedded control systems using a CPU model-based hardware/software co-simulation. We take an approach that allows the full simulation of the virtual mechanical control system including CPU and object code level software. In this paper, Renesas SH-2A microcontroller model was developed on CoMET™ platform from VaST Systems Technology. A ETC (Electronic Throttle Control) system and engine control system were chosen to prove this concept. The ETB (Electronic Throttle Body) model on Saber® simulator from Synopsys® or engine model on MATLAB®/Simulink® simulator from MathWorks can be simulated with the SH-2A model. To help the system design, debug and evaluation, we developed an integrated behavior analyzer, which can display CPU behavior graphically during the simulation without affecting the simulation result, such as task level CPU load, interrupt statistics, software variable transition chart, and so on.
Technical Paper

A Urea-Dosing Device for Enhancing Low-Temperature Performance by Active-Ammonia Production in an SCR System

2008-04-14
2008-01-1026
A new urea-dosing device with an active-ammonia production function was developed. This function is achieved by an electrically heated bypass passage with a hydrolysis catalyst for urea-to-ammonia conversion. The new device also has the function of mixing ammonia and exhaust gas. It is compact and has low-pressure loss by using the vortex occurring at the back of a static vane. We built a trial device for a small diesel engine and obtained steady state and transient data. The heated-bypass concept can be used in the aftertreatment system of passenger cars. Although active-ammonia production consumes electric power, a predictive calculation of power consumption (based on experimental results) shows that the developed bypass heater can suppress the energy consumption enough not to harm the high-energy efficiency of diesel engines.
Technical Paper

Cold Start HC Reduction with Feedback Control Using a Crank Angle Sensor

2008-04-14
2008-01-1010
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas can be reduced by optimizing the air-fuel ratio. However, a conventional air-fuel ratio feedback control does not operate for the first ten seconds after the engine has started because the air-fuel ratio sensor has not yet been activated. In this paper, we report on a study to optimize the air-fuel ratio using a crank angle sensor until the air-fuel ratio sensor has been activated. A difference in fuel properties was used as a typical disturbance factor. The control was applied to both a direct-injection engine (DI) and a port-injection engine (MPI). It was evaluated for two fuel types: one which evaporates easily and one which does not. The experimental results show the air-fuel ratio is optimized for both types of fuel.
Technical Paper

The New High-Performance V6 Gasoline Turbocharged Engine from NISSAN

2009-04-20
2009-01-1067
It can be said that super sports car has a mission to drive the evolution of cars with optimizing the balance between power and environmental performances and pursuing the ultimate driving performance. Nissan has therefore developed the brand new V6 gasoline twin-turbocharged engine for a new generation of super sports cars. To achieve high environmental as well as high dynamic performance, the V6-cylinder layout was selected for its compact size and lightweight while the twin-turbocharged design was aiming for downsizing. All engine parts were designed to achieve high efficiency, as for example, the plasma-sprayed coating of the bore which improves greatly the cooling performance, or the super-heat resistant steel used for the turbocharger, which improves combustion efficiency. Thanks to this technological advance, top-level properties could be attained for sports cars in terms of fuel economy and emissions.
Technical Paper

An Air-Fuel Ratio and Ignition Timing Retard Control Using a Crank Angle Sensor for Reducing Cold Start HC

2009-04-20
2009-01-0588
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas is reduced by controlling the air-fuel ratio to the low HC range and retarding the ignition timing as much as possible until the engine stability reaches a certain deterioration level. Conventionally however, the target air-fuel ratio has been set at a richer range than the low HC range and the target ignition timing has been more advanced than the engine stability limit, in order to stabilize the engine for various disturbances. As a result, the HC concentration has not been minimized. To solve this problem, a new engine control has been developed. This control uses a crank angle sensor to simultaneously control the air-fuel ratio and the ignition timing so that the HC concentration can be minimized.
Technical Paper

A Model-Based Technique for Spark Timing Control in an SI Engine Using Polynomial Regression Analysis

2009-04-20
2009-01-0933
Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

A Study of a Continuous Variable Valve Event and Lift (VEL) System

2001-03-05
2001-01-0243
A new variable valve actuation system that varies valve lift and timing events continuously has been devised and confirmed to substantially improve power and reduce fuel consumption when applied to a SI engine. The variable valve event and lift (VEL) system is a simple mechanism consisting of oscillating cams and linkages, enabling it to operate the valves smoothly even at high speed. Its compact size facilitates application to direct-acting valve trains and its ability to vary valve lift from a deactivated state (0) to a large lift amount allows the system to be used with a wide range of engine concepts. In this study, VEL was combined with a phase shifting function to enable the valve lift characteristic to be varied virtually arbitrarily, and test results showed that fuel consumption of a SI engine was reduced by nearly 10%.
Technical Paper

Fractal Dimension Growth Model for SI Engine Combustion

2004-06-08
2004-01-1993
Time-resolved continuous images of wrinkling flame front cross-sections were acquired by a laser-light sheet technique in an optically accessible spark ignition engine. The test engine was operated at various engine speeds and compression ratios. The fractal dimension of the curve, D2, was measured in a time series for each cycle. Analysis of the data shows that as the flame propagates the fractal dimension, D2, is close to unity a short time after spark ignition and then increases. Examination of the relationship between the growth rate of the fractal dimension, ΔD2/Δt, and D2 reveals that the higher D2 is, the lower ΔD2/Δt becomes. An Empirical equation for ΔD2/Δt was derived as a function of the ratio of the turbulence intensity to the laminar burning velocity and pressure. This model was tested in an SI engine combustion simulation, and results compared favorably with experimental data.
Technical Paper

A Study of a Variable Compression Ratio System with a Multi-Link Mechanism

2003-03-03
2003-01-0921
This paper presents a variable compression ratio (VCR) system that has a new piston-crankshaft mechanism with multiple links. This multi-link mechanism varies the piston position at top dead center (TDC), making it possible to change the compression ratio of the engine continuously. Previous attempts have been made to achieve variable compression ratio with this type of method, but it was difficult to avoid various undesirable effects such as an increase in the engine size, substantial weight increases, increased engine block vibration due to a worsening of piston acceleration characteristics and increased friction resulting from a larger number of sliding parts. At the stage of developing the basic design of the multi-link geometry, emphasis was placed on selection of a suitable link geometry and optimization of the detailed dimensions with the aim of essentially resolving these previous issues.
Technical Paper

Air-Fuel Ratio Sensor Utilizing Ion Transportation in Zirconia Electrolyte

1991-02-01
910501
To detect an air-fuel ratio in wide range is very important to control the automotive engines with low fuel consumption and low exhaust emissions. Although the application of zirconia electrolyte for this purpose has been proposed by the authors several years ago, there remained several problems due to the contamination of gas diffusion apertures which are exposed to the exhaust gas environment. Here the behavior of ions transported in zirconia electrolyte have been analyzed to optimize the structure and characteristics, and to guarantee the long life operation of sensor. Gas contents and their reactions in combustion process under the wide range air-fuel ratio have been analyzed, and these results were reflected to the analysis of ion transportation in zirconia electrolyte. Experimental results supported the analytical results, and they showed the possibilities of long life operation of zirconia air-fuel ratio sensor utilizing ion transportation phenomena.
Technical Paper

Highly Heat-Resistant Plastic Optical Fibers

1991-02-01
910875
Plastic optical fiber has been widely used in the field of short distance optical transmission. However heat resistance of commercial plastic fiber is so low that its applications are limited. Then, a plastic fiber of thermosetting acrylate resin core has been developed. This fiber shows 80%/m retention of light transmittance at 1m after 1,000 hours at 150°C. It resists heat deformation and withstands up to 200 °C for a short time period. Tests show this fiber has desirable mechanical characteristics, along with good environmental resistance. In addition, a fiber which has a silicon resin as a core material was developed which has even better heat resistance.
X