Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Consumer Behavior and Risk Aversion

2011-11-04
Nissan has released our original HEV system in Japan on November 2010, and will release it in US market on March 2011. The 1 motor 2 clutch parallel type using conventional 7 speed automatic transmission has been employed without torque converter and with a manganese cathode and laminated type Li-ion Battery. This system is well recognized its higher efficiency but lower weight and cost, however, has never realized due to technical difficulties of smoothness. At this session, performance achievements and hinged breakthrough technologies will be presented. Presenter Tetsuya Takahashi, Nissan Motor Co., Ltd.
Video

Hydrocarbon Fouling of SCR During PCCI Combustion

2012-06-18
The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Journal Article

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

2010-10-25
2010-01-2267
Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H₂, CO, NH₃, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.
Journal Article

Lean NOx Trap Modeling for Vehicle Systems Simulations

2010-04-12
2010-01-0882
A transient, one-dimensional lean NOx trap (LNT) model is described and implemented for vehicle systems simulations. The model accounts for conservation of chemical species and thermal energy, and includes the effects of O₂ storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO₂, respectively, into sorbent particles, and reaction rates are controlled by chemical kinetics and solid-phase diffusion. The model also accounts for thermal aging and sulfation by means of empirical correlations, which have been derived from laboratory experiments. Example simulation results using the Powertrain Systems Analysis Toolkit (PSAT) are presented.
Journal Article

Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

2014-01-15
2013-01-9092
Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg−1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%.
Journal Article

Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

2014-04-01
2014-01-1505
A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at λ=0.96 for nearly all conditions studied. At the λ=0.96 condition, HC emissions were relatively minimal, but CO emissions were significant.
Journal Article

Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

2014-04-01
2014-01-1562
We present simulated fuel economy and emissions of city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but tailpipe (post-aftertreatment) emissions are affected by complex interactions between engine load and the transient catalyst temperatures, and the emissions results were found to depend significantly on motor size and details of each drive cycle.
Journal Article

Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results

2014-10-13
2014-01-2562
Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study quantifies recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent).
Journal Article

Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

2016-04-05
2016-01-0934
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst.
Journal Article

Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

2016-04-05
2016-01-0909
A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years 2017 (MY17) through 2025 (MY25) passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the required rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the model year 2005 (MY05) US light-duty vehicle fleet to the model year 2015 (MY15) fleet shows improved fuel economy (FE) of approximately 26% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of required vehicle rate-of-change.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Journal Article

Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

2008-10-06
2008-01-2497
The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP.
Journal Article

Effects of Rapid High Temperature Cyclic Aging on a Fully-Formulated Lean NOx Trap Catalyst

2009-04-20
2009-01-0634
In this study, high-temperature deactivation of a fully-formulated lean NOx trap (LNT) is investigated with an accelerated aging protocol where accelerated aging is accomplished by rapid temperature cycling and by higher temperatures. Thermal aging is carried out in a bench-flow reactor at nominal temperatures of 700, 800, 900, and 1000°C using an aging cycle consisting of a 130s lean-phase and a 50s rich-phase. After a prescribed number of lean/rich aging cycles, the NOx conversion of the aged LNT is evaluated at 200, 300, and 400°C. The NOx performance is obtained at a GHSV of 30,000 h−1 using an evaluation cycle consisting of a 60s lean-phase and 5s rich-phase. The effects of aging on the LNT washcoat are determined with EPMA, XRD, STEM/EDS, and BET. Aging at 700 and 800°C has a minimal effect on LNT performance and material properties.
Journal Article

Predicting Individual Fuel Economy

2011-04-12
2011-01-0618
To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG.
Journal Article

Hydrocarbon Fouling of SCR During PCCI Combustion

2012-04-16
2012-01-1080
The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which has smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Journal Article

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies for Medium- and Heavy-Duty Trucks Using Characteristic Drive Cycle Data

2012-04-16
2012-01-0361
Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest.
Journal Article

Failure Stress and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics

2012-04-16
2012-01-1252
Three established mechanical test specimen geometries and test methods used to evaluate mechanical properties of brittle materials are adapted to the diesel particulate filter (DPF) architecture to evaluate failure initiation stress and apparent elastic modulus of the ceramics comprising DPFs. The three custom-designed test coupons are harvested out of DPFs to promote a particular combination of orientation of crack initiation and crack plane. The testing of the DPF biaxial flexure disk produces a radial tensile stress and a crack plane parallel with the DPF's longitudinal axis. The testing of the DPF sectored flexural specimen produces axial tension at the DPF's OD and a crack plane perpendicular to the DPF's longitudinal axis. The testing of the DPF o-ring specimen produces hoop tension at the DPF's original outer diameter (OD) and at the inner diameter of the test coupon, and a crack plane parallel to the DPF's longitudinal axis.
X