Refine Your Search

Topic

Author

Search Results

Journal Article

Impact of Hydrocarbons on the Dual (Oxidation and SCR) Functions of Ammonia Oxidation Catalysts

2014-04-01
2014-01-1536
Ammonia oxidation (AMOX) catalysts are critical parts of most diesel aftertreatment systems around the world. These catalysts are positioned downstream of selective catalytic reduction (SCR) catalysts and remove unreacted NH3 that passes through the SCR catalyst. In many configurations, the AMOX catalyst is situated after a diesel oxidation catalyst and catalyzed diesel particulate filter that oxidize CO and hydrocarbons. However, in Euro V and proposed Tier 4 final aftertreatment architectures there is no upstream oxidation catalyst. In this study, the impact of hydrocarbons is evaluated on two different types of AMOX catalysts. One has dual washcoat layers-SCR washcoat on top of PGM washcoat-and the other has only a PGM washcoat layer. Results are presented for NH3 and hydrocarbon oxidation, NOx and N2O selectivity, and hydrocarbon storage. The AMOX findings are rationalized in terms of their impact on the individual oxidation and SCR functions.
Journal Article

Conversion of Short-Chain Alkanes by Vanadium-Based and Cu/Zeolite SCR Catalysts

2016-04-05
2016-01-0913
The oxidation of short-chain alkanes, such as methane, ethane, and propane, from the exhaust of lean-burn natural gas and lean-burn dual-fuel (natural gas and diesel) engines poses a unique challenge to the exhaust aftertreatment community. Emissions of these species are currently regulated by the US Environmental Protection Agency (EPA) as either methane (Greenhouse Gas Emissions Standards) or non-methane hydrocarbon (NMHC). However, the complete catalytic oxidation of short-chain alkanes is challenging due to their thermodynamic stability. The present study focuses on the oxidation of short-chain alkanes by vanadium-based and Cu/zeolite selective catalytic reduction (SCR) catalysts, generally utilized to control NOx emissions from lean-burn engines. Results reveal that these catalysts are active for short-chain alkane oxidation, albeit, at conversions lower than those generally reported in the literature for Pd-based catalysts, typically used for short-chain alkane conversion.
Journal Article

Impact of Hydrothermal Aging on the Formation and Decomposition of Ammonium Nitrate on a Cu/zeolite SCR Catalyst

2017-03-28
2017-01-0946
Low-temperature (T ≤ 200°C) NOx conversion is receiving increasing research attention due to continued potential reductions in regulated NOx emissions from diesel engines. At these temperatures, ammonium salts (e.g., ammonium nitrate, ammonium (bi)sulfate, etc.) can form as a result of interactions between NH3 and NOx or SOx, respectively. The formation of these salts can reduce the availability of NH3 for NOx conversion, block active catalyst sites, and result in the formation of N2O, a regulated Greenhouse Gas (GHG). In this study, we investigate the effect of hydrothermal aging on the formation and decomposition of ammonium nitrate on a state-of-the-art Cu/zeolite selective catalytic reduction (SCR) catalyst. Reactor-based constant-temperature ammonium nitrate formation, temperature programmed oxidation (TPO), and NO titration experiments are used to characterize the effect of hydrothermal aging from 600 to 950°C.
Journal Article

Understanding System- and Component-Level N2O Emissions from a Vanadium-Based Nonroad Diesel Aftertreatment System

2017-03-28
2017-01-0987
Nitrous oxide (N2O), with a global warming potential (GWP) of 297 and an average atmospheric residence time of over 100 years, is an important greenhouse gas (GHG). In recognition of this, N2O emissions from on-highway medium- and heavy-duty diesel engines were recently regulated by the US Environmental Protection Agency (EPA) and National Highway Traffic Safety Administration’s (NHTSA) GHG Emission Standards. Unlike NO and NO2, collectively referred to as NOx, N2O is not a major byproduct of diesel combustion. However, N2O can be formed as a result of unselective catalytic reactions in diesel aftertreatment systems, and the mitigation of this unintended N2O formation is a topic of active research. In this study, a nonroad Tier 4 Final/Stage IV engine was equipped with a vanadium-based selective catalytic reduction (SCR) aftertreatment system. Experiments were conducted over nonroad steady and both cold and hot transient cycles (NRSC and NRTC, respectively).
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

2008-04-14
2008-01-0333
Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.
Journal Article

Methods for Quantifying the Release of Vanadium from Engine Exhaust Aftertreatment Catalysts

2012-04-16
2012-01-0887
Titanium dioxide supported vanadium oxide catalysts have been successfully utilized for the selective catalytic reduction (SCR) of nitrogen oxides emitted from both stationary and mobile sources. Because of their cost and performance advantages in certain applications, vanadium-based SCR catalysts are now also being considered for integration into some U.S. Tier IV off-highway aftertreatment systems. However, concern exists that toxic vanadium compounds, such as vanadium pentoxide, could be released from these catalysts as a result of mechanical attrition or high temperature volatility. An experimental study has been conducted to compare various techniques for measuring the release of particle and vapor-phase vanadium from SCR catalysts. Previous research has utilized a powder reactor-based method to measure the vapor-phase release of vanadium, but there are inherent limitations to this technique.
Journal Article

Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

2012-04-16
2012-01-1295
Although the urea-SCR technology exhibits high NO reduction efficiency over a wide range of temperatures among the lean NO reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NO reduction performance at low-temperature operating conditions (T ≺ 150°C). We postulate that the poor performance is either due to NH₃ storage inhibition by species like hydrocarbons or due to competitive adsorption between NH₃ and other adsorbates such as H₂O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite-based urea-SCR catalysts based on bench reactor experiments.
Journal Article

Filtration Efficiency and Pressure Drop Performance of Ceramic Partial Wall Flow Diesel Particulate Filters

2013-11-20
2013-01-9072
A simple 1-dimensional filter model, with symmetric and asymmetric channels, has been developed to investigate the fundamental behavior and performance of ceramic partial diesel particulate filters (PFs). The governing equations of mass and momentum are similar to those of a full DPF [7, 15]. A standard DPF with the plugs at its inlet face removed has been referred to as a ‘rear-plugged PF’ while, one with the plugs at the outlet face removed has been referred to as a ‘front-plugged PF’ in the present study. Removal of some of the plugs from a standard ceramic DPF reduces the (i) overall pressure drop (ΔP) across the filter, (ii) filtration efficiency (FE) of the DPF, and (iii) manufacturing cost. Partial filters stand a high chance of being deployed in diesel exhaust after-treatment systems for the emerging markets (Brazil, Russia, India, China) that follow Euro 4 emission regulations.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Visualization Techniques for Single Channel DPF Systems

2007-04-16
2007-01-1126
New techniques have been developed to visualize soot deposition in both traditional and new diesel particulate filter (DPF) substrate materials using a modified cyanoacrylate fuming technique. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results. Early results indicate that stabilizing the soot layer using a vaporized adhesive (Cynoacrylate) may allow analysis of the layer with new methods.
Technical Paper

Optimizing the Advanced Ceramic Material for Diesel Particulate Filter Applications

2007-04-16
2007-01-1124
This paper describes the application of pore-scale filtration simulations to the advanced ceramic material (ACM) developed for use in advanced diesel particulate filters. The application required the generation of a three-dimensional substrate geometry to provide the boundary conditions for the flow model. An innovative stochastic modeling technique was applied matching chord length distribution and the porosity profile of the material. Additional experimental validation was provided by the single-channel experimental apparatus. Results show that the stochastic reconstruction techniques provide flexibility and appropriate accuracy for the modeling efforts. Early investigation efforts imply that needle length may provide a mechanism for adjusting performance of the ACM for diesel particulate filter (DPF) applications. New techniques have been developed to visualize soot deposition in both traditional and new DPF substrate materials.
Technical Paper

Diesel NOx Reduction on Surfaces in Plasma

1998-10-19
982511
Recent work has shown that energy efficiencies as well as yields and selectivities of the NOx reduction reaction can be enhanced by combining a plasma discharge with select catalysts. While analysis of gas phase species with a chemiluminescent NOx meter and mass spectrometer show that significant removal of NOx is achieved, high background concentrations of nitrogen preclude the measurement of nitrogen produced from NOx reduction. Results presented in this paper show that N2 from NOx reduction can be measured if background N2 is replaced with helium. Nitrogen production results are presented for a catalyst system where the catalyst is in the plasma region and where the catalyst is downstream from the plasma. The amount of N2 produced is compared with the amount of NOx removed as measured by the chemiluminescent NOx meter. The measured nitrogen from NOx reduction accounts for at least 40% of the total NOx removed for both reactor configurations.
Technical Paper

Development and Validation of a Predictive Model for DEF Injection and Urea Decomposition in Mobile SCR DeNOx Systems

2010-04-12
2010-01-0889
Selective catalytic reduction (SCR) of oxides of nitrogen with ammonia gas is a key technology that is being favored to meet stringent NOx emission standards across the world. Typically, in this technology, a liquid mixture of urea and water - known as Diesel Exhaust Fluid (DEF) - is injected into the hot exhaust gases leading to atomization and subsequent spray processes. The water content vaporizes, while the urea content undergoes thermolysis and forms ammonia and isocyanic acid, that can form additional ammonia through hydrolysis. Due to the increasing interest in SCR technology, it is desirable to have capabilities to model these processes with reasonable accuracy to both improve the understanding of processes important to the aftertreatment and to aid in system optimization. In the present study, a multi-dimensional model is developed to simulate DEF spray processes and the conversion of urea to ammonia. The model is then implemented into a commercial CFD code.
Technical Paper

Characterization of Acid Sites in Ion-exchanged and Solid State-exchanged Zeolites

2001-09-24
2001-01-3571
Brønsted acidity of solution ion-exchanged and solid-state exchanged zeolites was compared for NaY, BaY, CaY, NaX, and CaX zeolites. These materials were chosen because they all exhibit catalytic activity in SCR of NOx in combination with a non-thermal plasma. Brønsted acidity was characterized qualitatively with retinol as an indicator dye. Our results show that the solid-state exchange using a chloride salt creates zeolites with lower acidity than zeolites obtained by conventional solution ion-exchange. NO2 adsorption was also found to create a significant quantity of acid sites at room temperature and a slight increase in acidity at 200°C. We speculate that the acid sites created by NO2 adsorption, because of their vicinity to metal cation sites in the zeolite, may lead to preferential reactions that lead to NOx reduction. BaY made by solution ion-exchange and BaY made by solid-state exchange using a chloride salt were tested for NOx reduction in a plasma-catalyst reactor system.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

2001-09-24
2001-01-3570
This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

Selective Reduction of NOx in Oxygen Rich Environments with Plasma-Assisted Catalysis: The Role of Plasma and Reactive Intermediates

2001-09-24
2001-01-3513
The catalytic activity of selected materials (BaY and NaY zeolites, and γ-alumina) for selective NOx reduction in combination with a non-thermal plasma was investigated. Our studies suggest that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, all materials that are active in plasma-assisted catalysis were found to be very effective for the thermal reduction of NOx in the presence of aldehydes. For example, the thermal catalytic activity of a BaY zeolite with aldehydes gives 80-90% NOx removal at 250°C with 200ppm NOx at the inlet and a VHSV=12,000 h-1. The hydrocarbon reductants, n-octane and 1-propyl alcohol, have also shown high thermal catalytic activity for NOx removal over BaY, NaY and γ-alumina.
Technical Paper

Multi-Step Discharge/Catalyst Processing of NOx in Synthetic Diesel Exhaust

2001-09-24
2001-01-3510
In the discharge-catalyst treatment of diesel exhaust the discharge chemistry is known to oxidize NO to NO2 as well as to produce partially oxidized hydrocarbons for the heterogeneous reduction step. We find NO2 to be much more easily reduced to N2 on our catalysts, as long as there is a sufficient supply of reductant present. Unfortunately we typically find that a fraction of the NO2 is only partially reduced back to NO. Since much of the original hydrocarbon survives both the plasma and our catalyst, a subsequent stage of plasma will oxidize NO back to NO2 while at the same time replenishing the supply of partially oxidized hydrocarbon for another stage of heterogeneous catalysis. We present experimental evidence illustrating the advantages of multi-step discharge-catalyst treatment of NOx in simulated diesel exhaust.
Technical Paper

Cascade Processing of NOx by Two-Step Discharge/Catalyst Reactors

2001-09-24
2001-01-3509
We present here a phenomenological analysis of a cascade of two-step discharge-catalyst reactors. That is, each step of the cascade consists of a discharge reactor in series with a catalyst bed. These reactors are intended for use in the reduction of tailpipe emission of NOx from diesel engines. The discharge oxidizes NO to NO2, and partially oxidizes HC. The NO2 then reacts on the catalyst bed with hydrocarbons and partially oxidized HCs and is reduced to N2. The cascade may be essential because the best catalysts for this purpose that we have also convert significant fractions of the NO2 back to NO. As we show, reprocessing the gas may not only be necessary, but may also result in energy savings and increased device reliability.
Technical Paper

Lean-NOx and Plasma Catalysis Over γ-Alumina for Heavy Duty Diesel Applications

2001-09-24
2001-01-3569
The NOx reduction performance under lean conditions over γ-alumina was evaluated using a micro-reactor system and a non-thermal plasma-equipped bench test system. Various alumina samples were obtained from alumina manufacturers to assess commercial alumina materials. In addition, γ-alumina samples were synthesized at Caterpillar with a sol-gel technique in order to control alumina properties. The deNOx performances of the alumina samples were compared. The alumina samples were characterized with analytical techniques such as inductively coupled plasma (ICP) emission spectroscopy, temperature programmed desorption (TPD) and surface area measurements (BET) to understand physical and chemical properties. The information derived from these techniques was correlated with the NOx reduction performance to identify key parameters of γ-alumina for optimizing materials for lean-NOx and plasma assisted catalysis.
Technical Paper

Lattice-Boltzmann Diesel Particulate Filter Sub-Grid Modeling - A Progress Report

2003-03-03
2003-01-0835
Aftertreatment modeling capabilities are an important part of the diesel engine manufacturer's efforts to meet the quickly approaching EPA 2007 heavy-duty emissions regulations. A critical, yet poorly understood, component of particulate filter modeling is the representation of the soot oxidation rate. This term directly influences most of the macroscopic phenomenon of interest, including filtration efficiency, heat transfer, back pressure, and filter regeneration. Intrinsic soot cake properties such as packing density, permeability and heat transfer coefficients remain inadequately characterized (1). The work reported in this paper involves subgrid modeling techniques which may prove useful in resolving these inadequacies. The technique involves the use of a lattice Boltzmann modeling approach. This approach resolves length scales which are orders of magnitude below those typical of a standard computational fluid dynamics (CFD) representation of an aftertreatment device.
X