Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Investigation on Soot and NOx Formation in a DI Common Rail Diesel Engine with Pilot Injection

2001-03-05
2001-01-0657
The influence of pilot injection timing and quantity on soot, NOx, combustion noise and bsfc has been analyzed on a passenger car DI Diesel engine prototype equipped with a common rail fuel injection system. The investigated engine operating points were 1500/5, 2000/2, 2500/8 rpm/bar, which are quite typical of EC driving cycles. For each of these operating conditions, the pilot injection quantity was varied by up to 15% of the total injected quantity and the pilot injection timing was varied between 32° and 1° crank angle degrees. The principal combustion characteristics were determined on the basis of the heat release, and a thorough statistical analysis was performed to infer the correlation between the combustion parameters and soot and NOx emissions.
Technical Paper

Gerotor Lubricating Oil Pump for IC Engines

1998-10-19
982689
This paper documents an extensive study aimed at a better understanding of the peculiarities and performance of crankshaft mounted gerotor pumps for IC engines lubrication. At different extents, the modelling, simulation and testing of a specific unit are all considered. More emphasis, at the modelling phase, is dedicated to the physical and mathematical description of the flow losses mechanisms; the often intricate aspects of kinematics being deliberately left aside. The pressure relief valve is analysed at a considerable extent as is the modelling of the working fluid, a typically aerated subsystem in such applications. Simulation is grounded on AMESim, a relatively novel tool in the fluid power domain, that proves effective and compliant with user deeds and objectives. Testing, at steady-state conditions, forms the basis for the pro!gressive tuning of the simulation model and provides significant insight into this type of volumetric pump.
Technical Paper

A New Test Bench for HWA Fluid-Dynamic Characterization of a Two-Valved In-Piston-Bowl Production Engine

1995-10-01
952467
A new test bench has been set up and equipped in order to analyze the air mean motion and turbulence quantities in the combustion system of an automotive diesel engine with one helicoidal intake duct and a conical type in-piston bowl. A sophisticated HWA technique employing single- and dual-sensor probes was applied to the in-cylinder flow investigation under motored conditions. The anemometric probe was also operated as a thermometric sensor. An analytical-numerical procedure, based on the heat balance equations for both anemometric and thermometric wires, was refined and applied to compute the gas velocity from the anemometer output signal. The gas property influence, the thermometric sensor lag and the prong temperature effects were taken into account with this procedure. The in-cylinder velocity data were reduced using both a cycle-resolved approach and the conventional ensemble-averaging procedure, in order to separate the mean flow from the fluctuating motion.
Technical Paper

Mode-shifting Minimization in a Power Management Strategy for Rapid Component Sizing of Multimode Power Split Hybrid Vehicles

2018-04-03
2018-01-1018
The production of multi-mode power-split hybrid vehicles has been implemented for some years now and it is expected to continually grow over the next decade. Control strategy still represents one of the most challenging aspects in the design of these vehicles. Finding an effective strategy to obtain the optimal solution with light computational cost is not trivial. In previous publications, a Power-weighted Efficiency Analysis for Rapid Sizing (PEARS) algorithm was found to be a very promising solution. The issue with implementing a PEARS technique is that it generates an unrealistic mode-shifting schedule. In this paper, the problematic points of PEARS algorithm are detected and analyzed, then a solution to minimize mode-shifting events is proposed. The improved PEARS algorithm is integrated in a design methodology that can generate and test several candidate powertrains in a short period of time.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

2018-04-03
2018-01-1142
The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

A PEM Fuel Cell Distributed Parameters Model Aiming at Studying the Production of Liquid Water Within the Cell During its Normal Operation: Model Description, Implementation and Validation

2011-04-12
2011-01-1176
One of the major issues coming out from low temperature fuel cells concerns the production of water vapor as a chemical reaction (between hydrogen and oxygen) by-product and its consequent condensation (at certain operating conditions), determining the presence of an amount of liquid water affecting the performance of the fuel cell stack: the production and the quantity of liquid water are strictly influenced by boundaries and power output conditions. Starting from this point, this work focuses on collecting all the required information available in literature and defining a suitable CFD model able to predict the production of liquid water within the fuel cell, while at the same time localizing it and determining the consequences on the PEM cell performances.
Technical Paper

A PEM Fuel Cell Laminar and Turbulent Models Comparison, Aiming at Identifying Small-Scale Plate Channel Phenomena: A Mesh Independent Configuration

2011-04-12
2011-01-1177
Computational Fluid Dynamics is a powerful instrument for PEM fuel cell systems development, testing and optimization. Considering the complication due to the multiple physical phenomena involved in the cell's operations, a good understanding of the micro-scale fluidic behavior in boundary layers is recommended: pressure drop along the reactants gas channels and the cooling channels has a sensible effect on parasite load in fuel cell systems (i.e. the power absorbed by the pump supplying the gases), as well as an important role in thermal transport. A correct thermal and fluid dynamic boundary layer prediction on the channel walls and the other contact surface with porous layers requires usually a dense finite element volumes discretization near wall, especially if laminar flows occur: therefore, the boundary layer computational cost tends to be the major one.
Technical Paper

Pem Fuel Cell Performance Under Particular Operating Conditions Causing the Production of Liquid Water: A Morphing on Bipolar Plate's Channels Approach

2011-04-12
2011-01-1349
A fuel-cell-based system's performance is mainly identified in the overall efficiency, strongly depending on the amount of power losses due to auxiliary devices to supply. In such a situation, everything that causes either a decrease of the available power output or an increment of auxiliary losses would determine a sensible overall efficiency reduction.
Technical Paper

Development and Application of an Advanced Numerical Model for CR Piezo Indirect Acting Injection Systems

2010-05-05
2010-01-1503
A numerical model for simulating a Common Rail Piezo Indirect Acting fuel injection-system under steady state as well as transient operating conditions was developed using a commercial code. A 1D flow model of the main hydraulic system components, including the rail, the rail to injector connecting pipe and the injector, was applied in order to predict the influence of the injector layout and of each part of the hydraulic circuit on the injection system performance. The numerical code was validated through the comparison of the numerical results with experimental data obtained on a high performance test bench of the Moehwald-Bosch MEP2000/ CA4000 type. The developed injection-system mathematical model was applied to the analysis of transient flows in the hydraulic circuit paying specific attention to the fluid dynamics internal to the injector.
Technical Paper

Energy Consumption in ICE Lubricating Gear Pumps

2010-10-25
2010-01-2146
Scope of this work is the analysis of the energy consumed by lubricating gear pumps for automotive applications during a driving cycle. This paper presents the lumped parameter simulation model of gerotor lubricating pumps and the comparison between numerical outcomes and experimental results. The model evaluates the power required to drive the pump and the cumulative energy consumed in the driving cycle. The influence of temperature variations on leakage flows, viscous friction torque and lubricating circuit permeability is taken into account. The simulation model has been validated by means of a test rig for hydraulic pumps able to reproduce the typical speed, temperature and load profiles during a NEDC driving cycle. Experimental tests, performed on a crankshaft mounted pump for diesel engines, have confirmed a good matching with the simulation model predictions in terms of instantaneous quantities and overall energy consumption.
Technical Paper

Gearbox Design by means of Genetic Algorithm and CAD/CAE Methodologies

2010-04-12
2010-01-0895
The paper discusses a gearbox design method based on an optimization algorithm coupled to a fully integrated tool to draw 3D virtual models, in order to verify both functionality and design. The aim of this activity is to explain how the state of the art of the gear design may be implemented through an optimization software for the geometrical parameters selection of helical gears of a manual transmission, starting from torque and speed time histories, the required set of gear ratios and the material properties. This approach can be useful in order to use either the experimental acquisitions or the simulation results to verify or design all of the single gear pairs that compose a gearbox. Genetic algorithm methods are applied to solve the optimization problems of gears design, due to their capabilities of managing objective functions discontinuous, non-differentiable, stochastic, or highly non-linear.
Technical Paper

1-D Modeling and Room Temperature Experimental Measurements of the Exhaust System Backpressure: Limits and Advantages in the Prediction of Backpressure

2008-04-14
2008-01-0676
It is well known that backpressure is one of the important parameters to be minimised during the exhaust system development. Unfortunately, during the first phases of an engineering process of a new engine, engine prototypes are not available yet. Due to this the exhaust system backpressure is generally evaluated using simulation software, and/or measuring the backpressure by a flow rig test at room temperature. Goal of this paper is to compare exhaust backpressure results obtained respectively: i) at the room temperature flow rig; ii) at the engine dyno bench; iii) by simulation with one of the most common 1D fluidodynamics simulation tool (Gt-Power). A correlation of the three different techniques is presented.
Technical Paper

Optimization of a Variable Geometry Exhaust System Through Design of Experiment

2008-04-14
2008-01-0675
Experimental Design methodologies have been applied in conjunction with objective functions for the optimization of the internal geometry of a rear muffler of a subcompact car equipped with a 1.4 liters displacement s.i. turbocharged engine. The muffler also features an innovative variable geometry design. The definition of an objective function summarising the silencing capability of the muffler has been driving the optimization process with the aim to reduce the tailpipe noise while maintaining acceptable pressure losses and complying with severe space constraints. Design of Experiments techniques for the reduction of experimental plans have been shown to be extremely effective to find out the optimum values of the design parameters, allowing a remarkable reduction of the time required by the design process in comparison with full factorial designs.
Technical Paper

An Experimental Investigation on OBD II Techniques for Fuel Injection System Monitoring in a Common Rail Passenger Car Diesel Engine

2009-04-20
2009-01-0240
Different diagnostic techniques were experimentally tested on a common rail automotive 4 cylinder diesel engine in order to evaluate their capabilities to fulfill the California Air Resources Board (CARB) requirements concerning the monitoring of fuel injected quantity and timing. First, a comprehensive investigation on the sensitivity of pollutant emissions to fuel injection quantity and timing variations was carried out over 9 different engine operating points, representative of the FTP75 driving cycle: fuel injected quantity and injection timing were varied on a single cylinder at a time, until OBD thresholds were exceeded, while monitoring engine emissions, in-cylinder pressures and instantaneous crankshaft revolution speed.
Technical Paper

A Proposal of an Oil Pan Optimization Methodology

2010-04-12
2010-01-0417
In the powertrain technology, designers must be careful on oil pan design in order to obtain the best noise, vibration and harshness (NVH) performance. This is a great issue for the automotive design because they affect the passengers' comfort. In order to reduce vibration and radiated noise in powertrain assembly, oil pan is one of the most critical components. The high stiffness of the oil pan permits to move up the natural modes of the component and, as a consequence, reduce the sound emission of the component itself. In addition, the optimized shape of the component allows the increase of natural frequency values of the engine assembly. The aim of this study is the development of a methodology to increase the oil pan stiffness starting from a sketch of the component and adding material where it is needed. The methodology is tested on a series of different models: they have the same geometry but different materials.
Technical Paper

Multi-body Versus Block-Oriented Approach in Suspension Dynamics of a Military Tracked Tank

2009-04-20
2009-01-0443
The superior mobility of a military vehicle provides the combat crew with a tactical advantage through increased cross country speed. The suspension system plays a fundamental role in evaluating a vehicle mobility. A mathematical model that allows realistic simulations of vehicles operating in a wide spectrum of environmental conditions may help to lower costs and time required during their development. The paper concerns with vehicle-terrain interaction modeling, for a military tracked tank, through multi-body and block-oriented approaches. It is focused on the consequences that the suspension system has got on the comfort and on the performance. Thus through a multi-body software a realistic three dimensional model of a tracked fighting vehicle is developed. This virtual model confirms some experimental data available on its longitudinal dynamics. In order to simplify the multi-body simulations, a block-oriented approach is adopted to develop a model of the same vehicle.
Technical Paper

Experimental Test of Vehicle Longitudinal Velocity and Road Frictim Estimation for ABS System

2009-04-20
2009-01-0428
Antilock Braking System (ABS) is designed to prevent wheels from locking, in order to enhance vehicle directional stability during braking manoeuvres. Basically, ABS closed-loop control logic uses tyres slip as control variable. Slip is estimated by comparing vehicle reference speed with the angular speed of each wheel. Thus it is crucial to correctly estimate the longitudinal vehicle speed, in order to get a control system capable of good performance. The control is also affected by road condition; since vehicles are not equipped with sensors able to measure the tyre/road friction coefficient, an other estimation has to be performed. The paper presents an algorithm for the estimation of longitudinal speed, based on the measurements of the four wheel angular speed. A method to assess the road friction, commonly known as “learning phase” is also described: it is carried out during the early stage of the active control intervention and relies on the wheel rotation sensors as well.
Technical Paper

Estimation of the Engine-Out NO2/NOx Ratio in a EURO VI Diesel Engine

2013-04-08
2013-01-0317
The present work has the aim of developing a semi-empirical correlation to estimate the NO₂/NOx ratio as a function of significant engine operating variables in a modern EURO VI diesel engine. The experimental data used in the present study were acquired at the dynamic test bench of ICEAL-PT (Internal Combustion Engine Advanced Laboratory at the Politecnico di Torino), in the frame of a research activity on the optimization of a General Motors Euro VI prototype 1.6-liter diesel engine equipped with a single-stage variable geometry turbine and a solenoid Common Rail system. The experimental tests were conducted over the whole engine map. A preliminary analysis was carried out to evaluate the uncertainty of the experimental acquired data and the NO₂/NOx ratio.
Technical Paper

Electromechanical Energy Scavenger for Automotive Tires

2011-04-12
2011-01-0097
This paper presents a multi-physic modeling of an electromechanical energy scavenging device able to supply energy inside car tires for wireless sensors. A permanent magnet, connected to the inner liner of a tire, is accelerated along a guide by the tire deformation during car motion; by interacting with coils it generates a power which is conditioned by a proper electronic interfaced to an external load. The original approach implemented in this kind of device is the nonlinear dynamic properties designed and controlled: adaptive resonance in function of car velocity is optimized for increasing its global efficiency. The energy conversion process takes into account the simulation of different phenomena such as: non linear dynamic and adaptive resonant behavior of the seismic mass, electromagnetic and magneto-static coupling between moving mass and coils, transfer of the generated power to an external load by means of a nonlinear circuit interface.
Technical Paper

Racing Simulation of a Formula 1 Vehicle with Kinetic Energy Recovery System

2008-12-02
2008-01-2964
This paper deals with the development of a Lap Time Simulator in order to carry out a first approximate evaluation of the potential benefits related to the adoption of the Kinetic Energy Recovery System (KERS). KERS will be introduced in the 2009 Formula 1 Season. This system will be able to store energy during braking and then use it in order to supply an extra acceleration during traction. Different technologies (e.g. electrical, hydraulic and mechanical) could be applied in order to achieve this target. The lap time simulator developed by the authors permits to investigate the advantages both in terms of fuel consumption reduction and the improvement of the lap time.
X