Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Ignition Delay on In-Cylinder Soot Characteristics of a Heavy Duty Diesel Engine Operating at Low Temperature Conditions

2009-04-20
2009-01-0946
Low temperature combustion (LTC) strategies, which can mitigate emissions of particulate matter (PM) and nitrogen oxides (NOx) from diesel engines, typically have longer ignition delays compared to conventional diesel operation. With extended ignition delays, more time is available for premixing, which reduces PM formation. The effect of varying ignition delay on the spatial and temporal evolution of soot in LTC diesel jets is studied by imaging the natural soot luminosity, while the in-cylinder soot mass and temperature are measured using two-color soot thermometry. Ignition delay in the engine is controlled by adjusting the intake air temperature while keeping the same charge density at TDC. This allowed us to study sooting characteristics at various ignition delays while keeping the same diesel jet penetration for all the cases.
Journal Article

Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline

2010-04-12
2010-01-1086
The potential of boosted HCCI for achieving high loads has been investigated for intake pressures (Piⁿ) from 100 kPa (naturally aspirated) to 325 kPa absolute. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) equipped with a compression-ratio 14 piston at 1200 rpm. The intake charge was fully premixed well upstream of the intake, and the fuel was a research-grade (R+M)/2 = 87-octane gasoline with a composition typical of commercial gasolines. Beginning with Piⁿ = 100 kPa, the intake pressure was systematically increased in steps of 20 - 40 kPa, and for each Piⁿ, the fueling was incrementally increased up to the knock/stability limit, beyond which slight changes in combustion conditions can lead to strong knocking or misfire. A combination of reduced intake temperature and cooled EGR was used to compensate for the pressure-induced enhancement of autoignition and to provide sufficient combustion-phasing retard to control knock.
Journal Article

Determination of Cycle Temperatures and Residual Gas Fraction for HCCI Negative Valve Overlap Operation

2010-04-12
2010-01-0343
Fuel injection during negative valve overlap offers a promising method of controlling HCCI combustion, but sorting out the thermal and chemical effects of NVO fueling requires knowledge of temperatures throughout the cycle. Computing bulk temperatures throughout closed portions of the cycle is relatively straightforward using an equation of state, once a temperature at one crank angle is established. Unfortunately, computing charge temperatures at intake valve closing for NVO operation is complicated by a large, unknown fraction of residual gases at unknown temperature. To address the problem, we model blowdown and recompression during exhaust valve opening and closing events, allowing us to estimate in-cylinder charge temperatures based on exhaust-port measurements. This algorithm permits subsequent calculation of crank-angle-resolved bulk temperatures and residual gas fraction over a wide range of NVO operation.
Journal Article

Combined Effects of Multi-Pulse Transient Plasma Ignition and Intake Heating on Lean Limits of Well-Mixed E85 DISI Engine Operation

2014-10-13
2014-01-2615
Well-mixed lean SI engine operation can provide improvements of the fuel economy relative to that of traditional well-mixed stoichiometric SI operation. This work examines the use of two methods for improving the stability of lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are compared to standard SI operation using a conventional high-energy inductive ignition system without intake air preheating. E85 is the fuel chosen for this study. The multi-pulse transient plasma ignition system utilizes custom electronics to generate 10 kHz bursts of 10 ultra-short (12ns), high-amplitude pulses (200 A). These pulses were applied to a custom spark plug with a semi-open ignition cavity. High-speed imaging reveals that ignition in this cavity generates a turbulent jet-like early flame spread that speeds up the transition from ignition to the main combustion event.
Journal Article

Characterization of Flow Asymmetry During the Compression Stroke Using Swirl-Plane PIV in a Light-Duty Optical Diesel Engine with the Re-entrant Piston Bowl Geometry

2015-04-14
2015-01-1699
Flow field asymmetry can lead to an asymmetric mixture preparation in Diesel engines. To understand the evolution of this asymmetry, it is necessary to characterize the in-cylinder flow over the full compression stroke. Moreover, since bowl-in-piston cylinder geometries can substantially impact the in-cylinder flow, characterization of these flows requires the use of geometrically correct pistons. In this work, the flow has been visualized via a transparent piston top with a realistic bowl geometry, which causes severe experimental difficulties due to the spatial and temporal variation of the optical distortion. An advanced optical distortion correction method is described to allow reliable particle image velocimetry (PIV) measurements through the full compression stroke. Based on the ensemble-averaged velocity results, flow asymmetry characterized by the swirl center offset and the associated tilting of the vortex axis is quantified.
Journal Article

Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions

2016-01-03
2016-01-9045
The downsizing of internal combustion engines to increase fuel economy leads to challenges in both obtaining ignition and stabilizing combustion at boosted intake pressures and high exhaust gas recirculation dilution conditions. The use of non-thermal plasma ignition technologies has shown promise as a means to more reliably ignite dilute charge mixtures at high pressures. Despite progress in fundamental research on this topic, both the capabilities and operation implications of emerging non-thermal plasma ignition technologies in internal combustion engine applications are not yet fully explored. In this work, we document the effects of using a corona discharge ignition system in a single cylinder gasoline direct injection research engine relative to using a traditional inductive spark ignition system under conditions associated with both naturally aspirated (8 bar BMEP) and boosted (20 bar BMEP) loads at moderate (2000 rpm) and high (4000 rpm) engine speeds.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Journal Article

Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline

2011-04-12
2011-01-0897
This study investigates the potential of partial fuel stratification for reducing the knocking propensity of intake-boosted HCCI engines operating on conventional gasoline. Although intake boosting can substantially increase the high-load capability of HCCI, these engines would be more production-viable if the knock/stability load limit could be extended to allow higher loads at a given boost and/or to provide even higher thermal efficiencies. A technique termed partial fuel stratification (PFS) has recently been shown to greatly reduce the combustion-induced pressure-rise rate (PRR), and therefore the knocking propensity of naturally aspirated HCCI, when the engine is fueled with a φ-sensitive, two-stage-ignition fuel. The current work explores the potential of applying PFS to boosted HCCI operation using conventional gasoline, which does not typically show two-stage ignition. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) at 1200 rpm.
Technical Paper

Modeling Chemistry in Lean NOx Traps Under Reducing Conditions

2006-10-16
2006-01-3446
A set of elementary surface reactions is proposed for modeling the chemistry in a lean NOx trap during regeneration (reduction of stored NOx). The proposed reaction mechanism can account for the observed product distribution from the trap over a range of temperatures and inlet gas compositions similar to those expected for realistic operation. The mechanism includes many reactions already discussed in the literature, together with some hypothesized reactions that are required to match observations from temperature programmed reactor experiments with a commercial lean NOx trap catalyst. Preliminary results indicate that the NOx trap regeneration and byproduct formation rates can be effectively captured by using a relatively compact set of elementary reactions.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

2018-04-03
2018-01-0230
In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Technical Paper

EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release over Wide Ranges of Engine Speed

2007-01-23
2007-01-0051
Reaching for higher loads and improving combustion-phasing control are important challenges for HCCI research. Although HCCI engines can operate with a variety of fuels, recent research has shown that fuels with two-stage autoignition have some significant advantages for overcoming these challenges. Because the amount of low-temperature heat release (LTHR) is proportional to the local equivalence ratio (ϕ), fuel stratification can be used to adjust the combustion phasing (CA50) and/or burn duration using various fuel-injection strategies. Two-stage ignition fuels also allow stable combustion even for extensive combustion-phasing retard, which reduces the knocking propensity. Finally, the LTHR reduces the required intake temperature, which increases the inducted charge mass for a given intake pressure, allowing higher fueling rates before knocking and NOx emissions become a problem. However, the amount of LTHR is normally highly dependent on the engine speed.
Technical Paper

End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines

2007-04-16
2007-01-0907
Although low-temperature combustion (LTC) strategies for compression-ignition engines can achieve very low emissions of nitrogen oxides (NOx) and particulate matter (PM) at high efficiency, they typically have increased emissions of other pollutants, including unburned hydrocarbons (UHC). In the current study, the equivalence ratio of mixtures near the injector are quantified under non-combusting conditions by planar laser-Rayleigh scattering (PLRS) in a constant-volume combustion chamber and by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene) in a single-cylinder direct-injection heavy-duty diesel engine at typical LTC conditions. The optical diagnostic images show that the transient ramp-down at the end of fuel injection produces a low-momentum, fuel-lean mixture in the upstream region of the jet, which persists late in the cycle.
Technical Paper

Large Eddy Simulation of Direct Injection Processes for Hydrogen and LTC Engine Applications

2008-04-14
2008-01-0939
Direct injection (DI) has proven to be a promising option in Diesel and low temperature combustion engines. In conventional Diesel and homogeneous charge compression ignition (HCCI) applications, DI lowers soot and NOx production and improves fuel economy. In hydrogen fueled engines, DI provides the appropriate energy density required for high efficiency and low NOx emissions. To realize the full benefit of DI, however, the effect of various injection parameters, such as injection timing, duration, pressure, and dilution, must be investigated and optimized under a range of engine operating conditions. In this work, we have developed a model for high-fidelity calculations of DI processes using the Large Eddy Simulation (LES) technique and an advanced property evaluation scheme. Calculations were performed using an idealized domain to establish a baseline level of validation.
Technical Paper

Full Cycle CFD Simulations to Study Thermal and Chemical Effects of Fuel Injection during Negative Valve Overlap in an Automotive Research Engine

2010-10-25
2010-01-2236
Recently experiments were conducted on an automotive homogeneous-charge-compression-ignition (HCCI) research engine with a negative-valve-overlap (NVO) cam. In the study two sets of experiments were run. One set injected a small quantity of fuel (HPLC-grade iso-octane) during NVO in varying amounts and timings followed by a larger injection during the intake stroke. The other set of experiments was similar, but did not include an NVO injection. By comparing both sets of results researchers were able to investigate the use of NVO fuel injection to control main combustion phasing under light-load conditions. For this paper a subset of these experiments are modeled with the computational-fluid-dynamics (CFD) code KIVA3V [ 6 ] using a multi-zone combustion model. The computational domain includes the combustion chamber, and intake and exhaust valves, ports, and runners. Multiple cycles are run to minimize the influence of initial conditions on final simulated results.
Technical Paper

Investigation of the Relationship Between DI Diesel Combustion Processes and Engine-Out Soot Using an Oxygenated Fuel

2004-03-08
2004-01-1400
The relationship between combustion processes and engine-out soot was investigated in an optically accessible DI diesel engine using diethylene glycol diethyl ether (DGE) fuel, a viable diesel oxygenate. The high oxygen content of DGE enables operation without soot emissions at higher loads than with a hydrocarbon fuel. The high cetane number of DGE enables operation at charge-gas temperatures below those required for current diesel fuels, which may be advantageous for reducing NOx emissions. In-cylinder optical measurements of flame lift-off length and natural luminosity were obtained simultaneously with engine-out soot measurements while varying charge-gas density and temperature. The local mixture stoichiometry at the lift-off length was characterized by a parameter called the oxygen ratio that was estimated from the measured flame lift-off length using an entrainment correlation for non-reacting sprays.
Technical Paper

Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion

2004-03-08
2004-01-1399
Methods of producing non-sooting, low flame temperature diesel combustion were investigated in an optically-accessible, quiescent constant-volume combustion vessel. Combustion and soot formation processes of single, isolated fuel jets were studied after autoignition and transient premixed combustion and while the injector needle was fully open (i.e., during the quasi-steady mixing-controlled phase of heat-release for diesel combustion).The investigation showed that fuel jets that do not undergo soot formation in any region of the reacting jet and that also have a low flame temperature could be produced in at least three different ways during mixing-controlled combustion: First, using a #2 diesel fuel and an injector tip with a 50 micron orifice, a fuel jet was non-sooting in ambient oxygen concentrations as low as 10% (simulating the use of EGR) for typical diesel ambient temperatures (1000 K) and densities.
Technical Paper

Impact of Lubricant Oil on Regulated Emissions of a Light-Duty Mercedes-Benz OM611 CIDI-Engine

2001-05-07
2001-01-1901
The Partnership for a New Generation Vehicle (PNGV) has identified the compression-ignition, direct-injection (CIDI) engine as a promising technology in meeting the PNGV goal of 80 miles per gallon for a prototype mid-size sedan by 2004. Challenges remain in reducing the emission levels of the CIDI-engine to meet future emission standards. The objective of this project was to perform an initial screening of crank case lubricant contribution to regulated engine-out emissions, particularly when low particulate forming diesel fuel formulations are used. The test engine was the Mercedes-Benz OM611, the test oils were a mineral SAE 5W30, a synthetic (PAO based) SAE 5W30, and a synthetic (PAO based) SAE 15W50, and the test fuels were a California-like certification fuel and an alternative oxygenated diesel fuel.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

2002-10-21
2002-01-2891
The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Optimizing the Scavenging System for a Two-Stroke Cycle, Free Piston Engine for High Efficiency and Low Emissions: A Computational Approach

2003-03-03
2003-01-0001
A free piston internal combustion (IC) engine operating on high compression ratio (CR) homogeneous charge compression ignition (HCCI) combustion is being developed by Sandia National Laboratories to significantly improve the thermal efficiency and exhaust emissions relative to conventional crankshaft-driven SI and Diesel engines. A two-stroke scavenging process recharges the engine and is key to realizing the efficiency and emissions potential of the device. To ensure that the engine's performance goals can be achieved the scavenging system was configured using computational fluid dynamics (CFD), zero- and one-dimensional modeling, and single step parametric variations. A wide range of design options was investigated including the use of loop, hybrid-loop and uniflow scavenging methods, different charge delivery options, and various operating schemes. Parameters such as the intake/exhaust port arrangement, valve lift/timing, charging pressure and piston frequency were varied.
X