Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Journal Article

A Fast Crank Angle Resolved Zero-Dimensional NOx Model Implemented on a Field-Programmable Gate Array

2013-04-08
2013-01-0344
In the automotive industry, the piezo-based in-cylinder pressure sensor is getting commercialized and used in production vehicles. For example, the pressure sensor offers the opportunity to design algorithms for estimation of engine emissions, such as soot and NO , during a combustion cycle. In this paper a zero-dimensional NO model for a diesel engine is implemented that will be used in real time. The model is based on the thermal NO formation and the Zeldovich mechanism using two non-geometrical zones: burned and unburned zone. The influence of EGR on combustion temperature was modeled using a well-known thermodynamic identity where specific heat at constant pressure is included. Specific heat will vary with temperature and the gas composition. The model was implemented in LabVIEW using tools specific for an FPGA (Field-Programmable Gate Array).
Journal Article

Cylinder Pressure-Based Virtual Sensor for In-Cycle Pilot Mass Estimation

2018-04-03
2018-01-1163
In this article, a virtual sensor for the estimation of the injected pilot mass in-cycle is proposed. The method provides an early estimation of the pilot mass before its combustion is finished. Furthermore, the virtual sensor can also estimate pilot masses when its combustion is incomplete. The pilot mass estimation is conducted by comparing the calculated heat release from in-cylinder pressure measurements to a model of the vaporization delay, ignition delay, and the combustion dynamics. A new statistical approach is proposed for the detection of the start of vaporization and the start of combustion. The discrete estimations, obtained at the start of vaporization and the start of combustion, are optimally combined and integrated in a Kalman Filter that estimates the pilot mass during the vaporization and combustion. The virtual sensor was programmed in a field programmable gate array (FPGA), and its performance tested in a Scania D13 Diesel engine.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Technical Paper

Stochastic Set-Point Optimization for In-Cycle Closed-Loop Combustion Control Operation

2021-04-06
2021-01-0531
The constrained indicated efficiency optimization of the set-point reference for in-cycle closed-loop combustion regulators is investigated in this article. Closed-loop combustion control is able to reduce the stochastic cyclic variations of the combustion by the adjustment of multiple-injections, a pilot and main injection in this work. The set-point is determined by the demand on engine load, burned pilot mass reference and combustion timing. Two strategies were investigated, the regulation of the start of combustion (SOC) and the center of combustion (CA50). The novel approach taken in this investigation consists of including the effect of the controlled variables on the combustion dispersion, instead of using mean-value models, and solve the stochastic optimization problem. A stochastic heat release model is developed for simulation and calibrated with extensive data from a Scania D13 six-cylinder engine. A Monte Carlo approach is taken for the simulations.
X