Refine Your Search

Topic

Search Results

Technical Paper

Characterisation and Model Based Optimization of a Complete Diesel Engine/SCR System

2009-04-20
2009-01-0896
In order to make efficient use of a Diesel engine equipped with an SCR system, it's important to have a complete system approach when it comes to calibration of the engine and the aftertreatment system. This paper presents a complete model of a heavy duty diesel engine equipped with a vanadia based SCR system. The diesel engine uses common rail fuel injection, a variable geometry turbocharger (VGT) and cooled EGR. The engine model consists of a quasi steady gas exchange model combined with a two-zone zero dimensional combustion model. The combustion model is a predictive heat release model. Using the calculated zone temperatures, the corresponding NOx concentration is given by the original Zeldovich mechanism. The SCR catalyst model is of the state space type. The basic model structure is a series of continuously stirred tank reactors and the catalyst walls are discretized to describe mass transport inside the porous structure.
Technical Paper

A Study of In-Cylinder Fuel Spray Formation and its Influence on Exhaust Emissions Using an Optical Diesel Engine

2010-05-05
2010-01-1498
Increasingly stringent emission legislation as well as increased demand on fuel efficiency calls for further research and development in the diesel engine field. Spray formation, evaporation and ignition delay are important factors that influence the combustion and emission formation processes in a diesel engine. Increased understanding of the mixture formation process is valuable in the development of low emission, high efficiency diesel engines. In this paper spray formation and ignition under real engine conditions have been studied in an optical engine capable of running close to full load for a real HD diesel engine. Powerful external lights were used to provide the required light intensity for high speed camera images in the combustion chamber prior to ignition. A specially developed software was used for spray edge detection and tracking. The software provides crank angle resolved spray penetration data.
Technical Paper

Acoustic Characterization of Shallow Flow Reversal Chambers

2011-05-17
2011-01-1519
Flow reversal chambers are common design elements in mufflers. Here an idealized flow reversal chamber with large cross-section but small depth has been studied. The inlet and outlet ducts as well as the cross-sectional area are fixed while the depth of the chamber can be varied. The resulting systems are then characterized experimentally using the two-microphone wave decomposition method and compared with results from both finite element modeling and various approaches using two-port elements. The finite element modeling results are in excellent agreement with the measurements over the whole frequency range studied, while two-port modeling can be used with engineering precision in the low frequency range. The influence of mean flow was studied experimentally and was shown to have relatively small influence, mainly adding some additional losses at low frequencies.
Technical Paper

Model-Based Guided Troubleshooting Applied to a Selective Catalytic Reduction System

2018-04-03
2018-01-1355
Troubleshooting trees are traditionally used to guide technicians through the process of identifying the cause of vehicle problems and solving them. These static trees can successfully visualize complex information. However, for modular vehicles, the trees become difficult to create and maintain due to the numerous different configurations of vehicles that can be constructed. These issues can be overcome by using a model-based approach. This paper describes a prototype tool for guided troubleshooting and shows its application to a selective catalytic reduction system used in many heavy vehicles. The troubleshooting tool guides the technician through the troubleshooting process by presenting the most likely fault candidates and recommending the most useful actions to perform. The list of candidates and recommendations are updated continuously to reflect the outcomes of past actions.
Technical Paper

Modelling Diesel Engine Combustion and NOx Formation for Model Based Control and Simulation of Engine and Exhaust Aftertreatment Systems

2006-04-03
2006-01-0687
Emissions standards are becoming increasingly harder to reach without the use of exhaust aftertreatment systems such as Selective Catalytic Reduction and particulate filters. In order to make efficient use of these systems it is important to have accurate models of engine-out emissions. Such models are also useful for optimizing and controlling next-generation engines without aftertreatment using for example exhaust gas recirculation (EGR). Engines are getting more advanced using systems such as common rail fuel injection, variable geometry turbochargers (VGT) and EGR. With these new technologies and active control of the injection timing, more sophisticated models than simple stationary emission maps must be used to get adequate results. This paper is focused on the calculation of engine-out NOx and engine parameters such as cylinder pressure, temperature and gas flows.
Technical Paper

Radiocarbon and Hydrocarbon Analysis of PM Sources During WHTC Tests on a Biodiesel-Fueled Engine

2014-04-01
2014-01-1243
PM in diesel exhaust has been given much attention due to its adverse effect on both climate and health. As the PM emission levels are tightened, the portion of particles originating from the lubrication oil is likely to increase. In this study, exhausts from a biodiesel-fueled Euro 5 engine were examined to determine how much of the carbonaceous particles that originated from the fuel and the lubrication oil, respectively. A combination of three methods was used to determine the PM origin: chain length analysis of the hydrocarbons, determination of organic and elemental carbon (OC and EC), and the concentration of 14C found in the exhausts. It was found that the standard method for measuring hydrocarbons in PM on a filter (chain length analysis) only accounted for 63 % of the OC, meaning that it did not account for all non-soot carbon in the exhausts.
Technical Paper

Particle Emission Measurements in a SI CNG Engine Using Oils with Controlled Ash Content

2019-01-15
2019-01-0053
Clean combustion is one of the inherent benefits of using a high methane content fuel, natural gas or biogas. A single carbon atom in the fuel molecule results, to a large extent, in particle-free combustion. This is due to the high energy required for binding multiple carbon atoms together during the combustion process, required to form soot particles. When scaling up this process and applying it in the internal combustion engine, the resulting emissions from the engine have not been observed to be as particle free as the theory on methane combustion indicates. These particles stem from the combustion of engine oil and its ash content. One common practice has been to lower the ash content to regulate the particulate emissions, as was done for diesel engines. For a gas engine, this approach has been difficult to apply, as the piston and valvetrain lubrication becomes insufficient.
Journal Article

Sensitivity Analysis Study on Ethanol Partially Premixed Combustion

2013-04-08
2013-01-0269
Partially Premixed Combustion (PPC) is a combustion concept which aims to provide combustion with low smoke and NOx with high thermal efficiency. Extending the ignition delay to enhance the premixing, avoiding spray-driven combustion and controlling the combustion temperature at an optimum level through use of suitable lambda and EGR levels have been recognized as key factors to achieve such a combustion. Fuels with high ignitability resistance have been proven to be a useful to extend the ignition delay. In this work pure ethanol has been used as a PPC fuel. The objective of this research was initially to investigate the required operating conditions for PPC with ethanol. Additionally, a sensitivity analysis was performed to understand how the required parameters for ethanol PPC such as lambda, EGR rate, injection pressure and inlet temperature influence the combustion in terms of controllability, stability, emissions (i.e.
Journal Article

A Fast Crank Angle Resolved Zero-Dimensional NOx Model Implemented on a Field-Programmable Gate Array

2013-04-08
2013-01-0344
In the automotive industry, the piezo-based in-cylinder pressure sensor is getting commercialized and used in production vehicles. For example, the pressure sensor offers the opportunity to design algorithms for estimation of engine emissions, such as soot and NO , during a combustion cycle. In this paper a zero-dimensional NO model for a diesel engine is implemented that will be used in real time. The model is based on the thermal NO formation and the Zeldovich mechanism using two non-geometrical zones: burned and unburned zone. The influence of EGR on combustion temperature was modeled using a well-known thermodynamic identity where specific heat at constant pressure is included. Specific heat will vary with temperature and the gas composition. The model was implemented in LabVIEW using tools specific for an FPGA (Field-Programmable Gate Array).
Technical Paper

CFD Studies of Combustion and In-Cylinder Soot Trends in a DI Diesel Engine - Comparison to Direct Photography Studies

2000-06-19
2000-01-1889
The main objective of this work is to develop a CFD model for studies of combustion and in-cylinder soot trends in a single cylinder DI diesel engine based on the Scania 14 liter V8 engine. The evaluation of the model is made with respect to ignition, cylinder pressure, heat release, onset of diffusion controlled combustion, liquid fuel spray penetration, in-cylinder soot distribution and exhaust soot level. The simulation results are compared to direct photography images and two-color calculations of temperature and soot distribution in a corresponding optical access test engine. This comparison shows good agreement concerning diffusion flame onset, liquid penetration, rate of heat release and local temperature distribution. Moreover, the prediction of in-cylinder soot distribution after end of injection also agrees well with the two-color calculation. To validate the model, the simulation is repeated for three different sets of operating conditions.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1833
An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
Technical Paper

Swirl and Injection Pressure Effect on Post-Oxidation Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Simulation

2013-10-14
2013-01-2577
In-cylinder flow pattern has been examined experimentally in a heavy duty optical diesel engine and simulated with CFD code during the combustion and the post-oxidation phase. Mean swirling velocity field and its evolution were extracted from optical tests with combustion image velocimetry (CIV). It is known that the post-oxidation period has great impact on the soot emissions. Lately it has been shown in swirling combustion systems with high injection pressures, that the remaining swirling vortex in the post-oxidation phase deviates strongly from solid body rotation. Solid body rotation can only be assumed to be the case before fuel injection. In the studied cases the tangential velocity is higher in the centre of the piston bowl compared to the outer region of the bowl. The used CIV method is closely related to the PIV technique, but makes it possible to extract flow pattern during combustion at full load in an optical diesel engine.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Technical Paper

Swirl and Injection Pressure Impact on After-Oxidation in Diesel Combustion, Examined with Simultaneous Combustion Image Velocimetry and Two Colour Optical Method

2013-04-08
2013-01-0913
After-oxidation in Heavy Duty (HD) diesel combustion is of paramount importance for emissions out from the engine. During diffusion diesel combustion, lots of particulate matter (PM) is created. Most of the PM are combusted during the after-oxidation part of the combustion. Still some of the PM is not, especially during an engine transient at low lambda. To enhance the PM oxidation in the late engine cycle, swirl together with high injection pressure can be implemented to increase in-cylinder turbulence at different stages in the cycle. Historically swirl is known to reduce soot particulates. It has also been shown, that with today's high injection pressures, can be combined with swirl to reduce PM at an, for example, engine transient. The mechanism why the PM engine out is reduced also at high injection pressures is however not so well understood.
Technical Paper

A Test Rig for Evaluating Thermal Cyclic Life and Effectiveness of Thermal Barrier Coatings inside Exhaust Manifolds

2019-04-02
2019-01-0929
Thermal Barrier Coatings (TBCs) may be used on the inner surfaces of exhaust manifolds in heavy-duty diesel engines to improve the fuel efficiency and prolong the life of the component. The coatings need to have a long thermal cyclic life and also be able to reduce the temperature in the substrate material. A lower temperature of the substrate material reduces the oxidation rate and has a positive influence on the thermo-mechanical fatigue life. A test rig for evaluating these properties for several different coatings simultaneously in the correct environment was developed and tested for two different TBCs and one oxidation-resistant coating. Exhausts were redirected from a diesel engine and led through a series of coated pipes. These pipes were thermally cycled by alternating the temperature of the exhausts. Initial damage in the form of cracks within the top coats of the TBCs was found after cycling 150 times between 50°C and 530°C.
Technical Paper

A State-Space Simplified SCR Catalyst Model for Real Time Applications

2008-04-14
2008-01-0616
The use of Selective Catalytic Reduction (SCR) is becoming increasingly more popular as a way of reducing NOx emissions from heavy duty vehicles while maintaining competitive operating costs. In order to make efficient use of these systems, it's important to have a complete system approach when it comes to calibration of the engine and aftertreatment system. This paper presents a simplified model of a heavy duty SCR catalyst, primarily intended for use in combination with an engine-out emissions model to perform model based offline optimization of the complete system. The traditional way of modelling catalysts using a dense discretization of the catalyst channels and non-linear differential equation solvers to solve the heat and mass balance equations, requires too much computational power in this application. The presented model is also useful in other applications such as model based control.
Technical Paper

Modeling the Intake CO2-level during Load Transients on a 1-Cylinder Heavy Duty DI Diesel Engine

2009-09-13
2009-24-0039
For diesel engines the major exhaust problem is particulate matter and NOx emissions. To reduce NOx, exhaust gas recirculation (EGR) is often used. The behavior of the EGR-level will therefore influence the emissions and it is therefore valuable to keep track of the EGR-level. Especially during transients it is difficult to predict how the EGR-level varies. In this paper the CO2-level in the intake is modeled on a 1-cylinder diesel engine to predict the in cylinder behavior during transients. The model is based on simple thermodynamics together with the ideal gas law. Using this, the model is validated by experimental data during transients and the correlation between model and experiment is shown to be strong. Furthermore, the total tank volume is decreased to achieve a faster mixing with the intention of simulating the behavior of the CO2-level in a full-size engine which has a higher gas flow.
Technical Paper

Study of a Heavy Duty Euro5 EGR-Engine Sensitivity to Fuel Change with Emphasis on Combustion and Emission Formation

2010-04-12
2010-01-0872
A diesel engine developed for an international market must be able to run on different fuels considering the diesel fuel qualities and the increasing selection of biofuels in the world. This leads to the question of how different fuels perform relative to a standard diesel fuel when not changing the hardware settings. In this study five fuels (Japanese diesel, MK3, EN590 with 10% RME, EN590 with 30% RME and pure RME) have been compared to a reference diesel fuel (Swedish MK1) when run on three different speeds and three different loads at each speed. The experiments are run on a Scania 13l Euro5 engine with standard settings for Swedish MK1 diesel. In general the differences were not large between the fuels. NO x usually increased compared to MK1 and then soot decreased as would be expected. The combustion efficiency increased with increased RME contents of the fuel but the indicated efficiency was not influenced by RME except for at higher loads.
Technical Paper

Model Predictive Control of a Combined EGR/SCR HD Diesel Engine

2010-04-12
2010-01-1175
Achieving upcoming HD emissions legislation, Euro VI/EPA 10, is a challenge for all engine manufacturers. A likely solution to meet the NOx limit is to use a combination of EGR and SCR. Combining these two technologies poses new challenges and possibilities when it comes to optimization and calibration. Using a complete system approach, i.e., considering the engine and the aftertreatment system as a single unit, is important in order to achieve good performance. Optimizing the complete system is a tedious task; first there are a large number of variables which affect both emissions and fuel consumption (injection timing, EGR rate, urea dosing, injection pressure, pilot/post injections, for example). Secondly, the chemical reactions in the SCR catalyst are substantially slower than the dynamics of the diesel engine and the rest of the system, making the optimization problem time dependent.
Journal Article

Towards a Model for Engine Oil Hydrocarbon Particulate Matter

2010-10-25
2010-01-2098
The drive to reduce particle emissions from heavy-duty diesel engines has reached the stage where the contribution from the lubricant can have a major impact on the total amount of particulate matter (PM). This paper proposes a model to predict the survival rate (unburnt oil divided by oil consumption) of the hydrocarbons from the lubricant consumed in the cylinder. The input data are oil consumption and cylinder temperature versus crank angle. The proposed model was tuned to correlate well with data from a six-cylinder heavy-duty diesel engine that meets the Euro 5 legislation without exhaust gas aftertreatment. The measured (and modelled) oil survival shows a strong correlation with engine power. The maximum oil survival rate measured (19%) was at motoring conditions at high speed. For this engine, loads above 100 kW yielded an oil survival rate of nearly zero.
X