Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Journal Article

New Combustion Concept for Turbocharged Gasoline Direct-Injection Engines

2014-04-01
2014-01-1210
The advantages of gasoline direct-injection are intake air cooling due to fuel vaporization which reduces knocking, additional degrees of freedom in designing a stratified injection mixture, and capability for retarded ignition timing which shortens catalyst light-off time. Stratified mixture combustion designs often require complicated piston shapes which disturb the fluid flow in the cylinder, leading to power reduction, especially in turbocharged gasoline direct-injection engines. Our research replaced the conventional shell-type shallow cavity piston with a dog dish-type curved piston that includes a small lip to facilitate stratification and minimize flow disturbance. As a result, stable stratified combustion and increased power were both achieved.
Technical Paper

Model Based Control for Premixed Charge Compression Ignition Diesel Engine

2020-04-14
2020-01-1150
Premixed charge compression ignition (PCCI) combustion is effective in reducing harmful exhaust gas and improving the fuel consumption of diesel engines [1]. However, PCCI combustion has a problem of exhibiting lower combustion stability than diffusive combustion [2, 3], which makes it challenging to apply to mass production engines. Its low combustion stability problem can be overcome by implementing complicated injection control strategies that account for variations in environmental and engine operating conditions as well as transient engine conditions, such as turbocharging delay, exhaust gas recirculation (EGR) delay, and intake air temperature delay. Although there is an example where the combustion mode is switched according to the intake O2 fraction [4], it requires a significant number of engineering-hours to calibrate multiple combustion modes. And besides, such switching combustion modes tends to have a risk of discontinuous combustion noise and torque.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Journal Article

Study of Diesel Engine System for Hybrid Vehicles

2011-08-30
2011-01-2021
In this study, we combined a diesel engine with the Toyota Hybrid System (THS). Utilizing the functions of the THS, reducing engine friction, lowering the compression ratio, and adopting a low pressure loop exhaust gas recirculation system (LPL-EGR) were examined to achieve both low fuel consumption and low nitrogen oxides (NOx) emissions over a wide operating range. After applying this system to a test vehicle it was verified that the fuel economy greatly surpassed that of a conventional diesel engine vehicle and that NOx emissions could be reduced below the value specified in the Euro 6 regulations without DeNOx catalysts.
Technical Paper

Effect of Mirror-Finished Combustion Chamber on Heat Loss

1990-10-01
902141
The use of ceramic insulation to reduce engine heat loss and thus improve fuel economy was examined but found to be detrimental rather than advantageous. This paper analyzes the reasons and presents an alternative approach, namely minimizing the heat transfer area. Experiments were conducted to determine the effects of surface smoothness on BSFC, output torque, heat release rate and piston temperature. It was found that with a mirror-finished combustion chamber, heat loss is decreased and consequently engine output is raised, while fuel consumption is lowered. The percentage reduction in heat loss was ascertained by numerically simulating combustion and was confirmed by FEM analysis of piston thermal distribution.
Technical Paper

Analysis of a New Automatic Transmission Control System for LEXUS LS400

1991-02-01
910639
A new automatic transmission, engineered from concept for “intelligent” and “anti-aging” (long life), has been designed and developed for TOYOTA's luxury passenger car, LEXUS LS400. This system, which has resulted in silky-smooth shift quality without changes in the long term, is composed of a transmission computer that interacts with engine computer, a number of sensors, an electronically controlled hydraulic unit with linear solenoid valves and assorted devices. As new control logic being developed with the aid of computer simulation to achieve distinction, the hydraulic and engine controls are combined in this system. There is a “feedback control”, where the clutch pressure is controlled according to the rate of acceleration and compensated for dispersion to applied pressure, engine torque and/or the coefficient of dynamic friction of clutches, and at the same time engine torque is reduced by retarding ignition timing.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Journal Article

Effects of Hydrotreated Vegetable Oil (HVO) as Renewable Diesel Fuel on Combustion and Exhaust Emissions in Diesel Engine

2011-08-30
2011-01-1954
The effects of Hydrotreated vegetable oil (HVO) on combustion and emission characteristics in a diesel engine were investigated by using spray analyzer, engine dynamometer and vehicle tests. Spray analysis showed that spray characteristics was virtually the same for HVO and diesel. From the results of the engine dynamometer and the vehicle tests, it was found that the high cetane number and the zero aromatics of HVO could reduce in HC and PM emissions. Moreover, as a result of optimized engine calcification, HVO is capable of improving partial fuel consumption and full-load torque. These results indicate that HVO has beneficial fuel characteristics for diesel engine.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Journal Article

Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet

2014-10-13
2014-01-2627
This paper presents the effects of a lubricant oil droplet on the start of combustion of a fuel-air mixture. Lubricant oil is thought to be a major source of low-speed pre-ignition in highly boosted spark ignition engines. However, the phenomenon has not yet been fully understood because its unpredictability and the complexity of the mixture in the engine cylinder make analysis difficult. In this study, a single oil droplet in a combustion cylinder was considered as a means of simplifying the phenomenon. The conditions under which a single oil droplet ignites earlier than the fuel-air mixture were investigated. Tests were conducted by using a rapid compression expansion machine. A single oil droplet was introduced into the cylinder through an injector developed for this study. The ignition and the flame propagation were observed through an optical window, using a high-speed video camera.
Journal Article

Onboard Gasoline Separation for Improved Vehicle Efficiency

2014-04-01
2014-01-1200
ExxonMobil, Corning and Toyota have collaborated on an Onboard Separation System (OBS) to improve gasoline engine efficiency and performance. OBS is a membrane based process that separates gasoline into higher and lower octane fractions, allowing optimal use of fuel components based on engine requirements. The novel polymer-ceramic composite monolith membrane has been demonstrated to be stable to E10 gasoline, while typically providing 20% yield of ∼100 RON product when using RUL 92 RON gasoline. The OBS system makes use of wasted exhaust energy to effect the fuel separation and provides a simple and reliable means for managing the separated fuels that has been demonstrated using several generations of dual fuel test vehicles. Potential applications include downsizing to increase fuel economy by ∼10% while maintaining performance, and with turbocharging to improve knock resistance.
Technical Paper

Next Generation High Performance ATF for Slip-Controlled Automatic Transmission

1997-10-01
972927
A slip-controlled lock-up clutch system Is very efficient in improving the fuel economy of automatic transmission (AT) equipped vehicles. However, a special automatic transmission fluid (ATF) which combines an anti-shudder property with high torque capacity is required for this system. In this study, we established additive technology for ATF having a sufficient anti-shudder property and high torque capacity. Based on the technology, new ATF: ATF-T4 was developed. It was confirmed in actual AT tests that ATF-T4 has excellent anti-shudder durability and high torque capacity. Furthermore, ATF-T4 has good SAE No. 2 friction characteristics, oxidation stability, compatibility with materials (elastomers, nylons, etc.) and viscosity at low temperatures.
Technical Paper

Hybrid Transmission Development for AWD Luxury Cars

2007-10-29
2007-01-4122
A new hybrid transmission has been developed for all-wheel-drive (AWD) cars, and is used in the new Lexus LS600h and LS600hL for its first application. It has a compact layout consisting of a power-split device, generator, high-output electric motor, and a two-stage speed reduction device. Combined with a 5-liter V-8 engine, it achieves power performance rivaling 6-liter engine vehicles, the fuel efficiency of a medium-class vehicle, and outstanding quietness. This paper describes the structure, performance, and shift control technology of this hybrid transmission.
Technical Paper

Two-Dimensional Temperature Measurements in Engine Combustion Using Phosphor Thermometry

2007-07-23
2007-01-1883
A phosphor thermometry, for measurements of two-dimensional gas-phase temperature was examined in turbulent combustion in an engine. The reasonable temperature deviation and the agreement with calculated data within 5% precision were achieved by single-shot images in the ignition process of compression ignition engine. Focusing on the local flame kernel, the flame structure could be quantitatively given by the temperature. It became evident that the HCCI flame kernels had 1-3 mm diameter and the isolated island structures. Subsequently, the HTR zone consisted of the combined flame kernels near TDC.
Technical Paper

Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars

1998-02-23
980820
A new compact five-speed automatic transmission (A650E) has been developed for front engine rear wheel drive cars. The development of this transmission has been aimed at improving fuel consumption, power performance, engine noise reduction during highway cruising and smooth acceleration by employing a wide range of gearing and close gear ratios. Generally a five-speed automatic transmission is larger than a four-speed, because of additional friction elements and gears. This can result in a change in the floor panel of the car body. However, by removing a one-way clutch for second gear and employing a unique gear-train layout, this transmission has the same circumference and length as the conventional four-speed automatic transmission (A340E)(1).1 In order to reduce first or second gear noise, gear specification and supporting structures of planetary gears have been optimized by FEM analysis.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

1990-10-01
902150
A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
X