Refine Your Search

Topic

Search Results

Journal Article

Assessment of Automatic Volume Leveling for Automotive Sound Systems

2013-04-08
2013-01-0162
This paper presents an assessment of competing algorithms for normalizing volume levels between tracks and/or sources in an automotive infotainment system. Portable media players such as smartphones and iPod® devices are extremely popular for listening to music collections or streaming content from the Internet. The lack of normalization is a source of dissatisfaction if the user experiences significant changes in audio level between tracks. Several commercially available algorithms exist to solve this problem. This research includes a double-blind listening test comparing an audio sample processed with the different leveling algorithms to an unprocessed reference. The listener preference rating is recorded and results indicate which algorithm is preferred.
Technical Paper

High Efficient LED Headlamp Design-Styling versus Light Performance

2007-04-16
2007-01-0874
First LED headlamps will be released into the market in 2007. Special permissions allow this introduction although the official regulation is still under discussion in ECE. The LED technology for front lighting has entered into a new phase from theoretical, prototype status to real and practical applications. Additionally in Europe the legislation, which is under preparation, defines LED modules with one or more LED chips in a row which should be replaceable. With this boundary conditions headlamp suppliers needs to balance between an attractive and innovative styling, demanded by car manufacturers and the light performance to gurantee good visibility at night. The paper describes the methods how to design an LED headlamp with high efficiency by keeping in mind the parameters: packaging, weight, styling and light perfromance. Results with specific design proposals are shown.
Technical Paper

Construction and Application of Near Field (TIR Type) Lenses for Automotive Lighting Functions

2007-04-16
2007-01-1040
Light Emitting Diodes (LEDs) are fast becoming the preferred light sources for automotive lighting applications. They emit light at cone angles equal (hemispherical) or less (conical) than 2Π radians. One way for efficiently collecting and collimating light from LED light sources is to use Near Field Lenses (NFLs). NFLs are collimators using refraction and total internal reflection (TIR) to efficiently collect and direct light. They tend to have thick sections and therefore require challenging molding techniques, and they may have the LED source optically coupled directly into them. Beside these functional aspects, NFLs offer unique styling for different lighting functions such as those in rear combination lamps (RCLs), front turn signal lamps, daytime running lamps (DRLs) and headlamps.
Technical Paper

Heat Simulation in Lighting

2007-04-16
2007-01-1388
During last 10-15 years we could have seen quite big changes in automotive lighting. The most important changes are: a) plastic materials mostly removed metal and glass material from lighting products raised heat issue of plastics materials b) escalation of competition between lighting suppliers (globalization, merging, …) decrease of time and cost for development of the new product as much as possible
Technical Paper

Model Reference Adaptive Control of a Pneumatic Valve Actuator for Infinitely Variable Valve Timing and Lift

2007-04-16
2007-01-1297
Electro-pneumatic valve actuators are used to eliminate the cam shaft of a traditional internal combustion engine. They are used to control the opening timing, duration, and lift of both intake and exhaust valves. A physics based nonlinear mathematical model called the level one model was built using Newton's law, mass conservation and thermodynamic principles. A control oriented model, the level two model, was created by partially linearizing the level one model for model reference parameter identification. This model reduces computational throughput and enables real-time implementation. A model reference adaptive control system was used to identify the nonlinear parameters that were needed for generating a feedforward control signal. The closed-loop valve lift tracking, valve opening and closing timing control strategies were proposed.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

Overview of Automotive Plastic Parts Molds Development of in Brazil

2003-11-18
2003-01-3565
In Brazil the market for plastic parts molds, in last few years had become very competitive, with several Vehicle Operations and a big number of a different models, and with today total market volume it means low volumes productions for each model. This market demands for good toolshops and at the same time a big pressure to reduce investments, one of the most important. Plastic components usage in the car, is increasing overtime, with new applications for Exterior, interior and powertrain, requiring new technologies for Injection molding processing and making molds to be more complex. The development of plastic parts in Brazil has its own characteristics, strengths and weaknesses. In fact a big and heterogeneous market. This paper intends to present an analysis of development of plastic parts in Brazil, considering the development of mold tooling locally, focusing the automotive market.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

A Predictive Control Algorithm for an Anti-Lock Braking System

2002-03-04
2002-01-0302
Generalized predictive control (GPC) is a discrete time control strategy proposed by Clark et al [1]. The controller tries to predict the future output of a system or plant and then takes control action at present time based on future output error. Such a predictive control algorithm is presented in this paper for deceleration slip regulation in an automobile. Most of the existing literature on the anti-lock brake control systems lacks the effectiveness of the wheel lockup prevention when the automobile is in a skid condition (in a low friction coefficient surface with panic braking situation). Simulation results show that the predictive feature of the proposed controller provides an effective way to prevent wheel lock-up in a braking event.
Technical Paper

Innovations in Laser Welding of Thermoplastics: This Advanced Technology is Ready to be Commercialized

2002-07-09
2002-01-2011
Previously we reported to the SAE 2000 basics in selection of various colored and un-colored/natural nylon 6 (polyamide - PA 6) based plastics for laser welding technology. Later we presented to Antec1 2001 and to SAE 2002 our developments of colored in black through-transmissible grades of PA 6 plastics, which were specially tailored for the specifics of the design and laser welding technology. In this current paper, we will try to enhance the understanding of the engineering community regarding the usefulness and applicability of laser welding technology, developed colored thermoplastics, and its increasing use in various automotive and transportation applications.
Technical Paper

Smart Structure and Integrated System: Reinforced Nylon and Aluminum Self-Tapping Screws

2002-07-09
2002-01-2030
Previously we reported to SAE 2002 the basic principles in materials selections for the fastening of plastics. In this current paper, we will try to increase the understanding of the automotive community regarding the usefulness and applicability of aluminum made self-tapping screws in the fastening of various thermoplastic components. Utilization of the light alloys for the manufacturing of fasteners for plastic applications allowed us to manage efficiently the stiffness considerations, short- and long-term performance of the assembled plastic components. The results presented in this study will help designers, technologists, thermoplastic and fastener developers and fastener manufacturers, to optimize mechanical performance of assembled automotive components, where self-tapping screws will be used.
Technical Paper

Novel High Performance Fiber-High Speed Test Development

2002-03-04
2002-01-0681
The major objective of this paper is to address how the actual force versus extension relationship for a seat belt during a collision is different from the one obtained at typical low rate (static) conditions. We also look at what features of the tensile stress-strain characteristic are important for the optimal performance of a seat belt. To answer these questions experimentally we use our high rate Instron -1331. We also designed an experimental set up that required special grips and contact sensors for characterizing samples of belt and yarn. In the theoretical part we demonstrate the selected rates for the tensile testing as relevant to the collisions. We also discuss the importance of the energy absorbing capacity of the belts as the most relevant characteristic of the tensile curves for this application. We then show the effect of visco-elastic factors on energy absorbing properties of fibers during collisions and the role of weaving and dyeing the belt.
Technical Paper

Innovations in Laser Welding Technology: State of the Art in Joining of Thermoplastics and Advances with Colored Nylon for Automotive Applications

2002-03-04
2002-01-0716
Previously we reported to the SAE'99 our findings on selections of nylon (polyamide) based plastics for laser welding (LW) technology. In this current paper, we will try to increase the understanding of the engineering community regarding the usefulness and applicability of an advanced LW technology (and developed thermoplastics), and its increasing use in various automotive applications.
Technical Paper

Creating a Positive and Successful Experience for Black-Belt Candidates

2002-03-04
2002-01-0897
For a first-time Black-Belt, many factors will determine the difference between success and failure, satisfaction and frustration. While some factors are affected by company policy, many are still within the control of the Black-Belt. Black-Belts can improve their chance for success by recognizing the opportunities and pitfalls going into the process, setting achievable goals, carefully scoping projects, and being prepared to work around obstacles.
Technical Paper

A Virtual Testing Methodology for Automotive Concept Product Design

2002-03-04
2002-01-1176
The process for accurately estimating product reliability early in the development process can be a difficult and costly task. Traditional methods like Reliability Prediction Models and Life Testing Strategies yield beneficial results when relative information is known about the product that is to be analyzed. When there is minimal information known (prior failure rates…) such a new concept design these above reliability methods have limitations. For these cases a Virtual Testing Strategies have proven to yield valuable results. This paper will demonstrate a reliability analysis procedure for a new automotive concept design. This analysis procedure composes of a mathematical model, model validation, parameter diagram, design of experiment (DOE), response surface, and optimization.
Technical Paper

A Study on the Strength of Catalytic Converter Ultra Thin Wall Substrates

2003-03-03
2003-01-0662
Application of Ultra Thin Wall (UTW) ceramic substrates in the catalytic converter system requires the canner and component manufacturers to better understand the root cause and physics behind substrate breakage during the canning process. For this purpose, a ceramic substrate strength study for shoebox design has been conducted within Visteon Corporation. Computer Numerical Control (CNC) machined top and bottom fixtures, with identical inner surfaces as shoebox converter upper and lower shells, were used to crush mat wrapped substrates. Thin film pressure sensor technology enables the recording of substrate surface pressure during the compression process. Shell rib, washcoat, canning speed and cell density effects on substrate failure have been experimentally investigated. The development of a mathematical model helps to identify a better indicator to evaluate the substrate strength in the canning process and establish the strength for uncoated & coated substrates.
Technical Paper

Reinforcement Challenges and Solutions in Optimized Design of Injection Molded Plastic Parts

2003-03-03
2003-01-1123
The mechanical performance of injection molded glass-fiber reinforced plastic parts is highly anisotropic and depends strongly on the kinetics (orientation and distribution) of the glass-fiber and the part geometry. Similarly, the bulk and local mechanical performance at the ribs, walls and welds is influenced by these glass-fibers and the specific processing technology (including joining) used, as related to melt-flow and melt-pool formation and glass-fiber re-orientation. The purpose of this study is to show: the effect of short glass-fiber orientation at the pre-welded beads, ribs and wall areas for injection molded and subsequently welded parts the short-term mechanical performance of welded butt-joints that have various geometry and thickness, namely “straight” and “T-type” welds.
Technical Paper

CAE Virtual Door Slam Test for Plastic Trim Components

2003-03-03
2003-01-1209
Visteon has developed a CAE procedure to qualify plastic door trim assemblies under the vehicle door slam Key Life Test (KLT) environments. The CAE Virtual Door Slam Test (VDST) procedure simulates the environment of a whole door structural assembly, as a hinged in-vehicle door slam configuration. It predicts the durability life of a plastic door trim sub-assembly, in terms of the number of slam cycles, based on the simulated stresses and plastic material fatigue damage model, at each critical location. The basic theory, FEA methods and techniques employed by the VDST procedure are briefly described in this paper. Door trim project examples are presented to illustrate the practical applications and their results, as well as the correlation with the physical door slam KLTs.
Technical Paper

Honeywell's Automotive Door Latch Design is Ideal for Corporate Latch Strategy

2003-03-03
2003-01-1190
In response to consumer demand, automakers are adding more safety, security, and convenience features to vehicle access control systems. Also, in a continuing effort to be more profitable, automakers are reducing costs by outsourcing the design of systems/sub-systems/components, reducing their supply base, and minimizing part numbers by sharing components across several platforms. In an attempt to improve efficiency and productivity, many OEM's have adopted a “corporate latch” strategy, implementing the same latch across several manufacturing platforms and marketing divisions. Honeywell's revolutionary door latch design efficiently and cost effectively addresses vehicle OEMs' current and future requirements for performance and functionality.
X