Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Relationships Between Instantaneous and Measured Emissions in Heavy Duty Applications

2001-09-24
2001-01-3536
Selective Catalytic Reduction (SCR), using urea injection, is being examined as a method for substantial reduction of oxides of nitrogen (NOx) for diesel engines, but the urea injection rates must be controlled to match the NOx production which may need to be predicted during open loop control. Unfortunately NOx is usually measured in the laboratory using a full-scale dilution tunnel and chemiluminescent analyzer, which cause delay and diffusion (in time) of the true manifold NOx concentration. Similarly, delay and diffusion of measurements of all emissions cause the task of creating instantaneous emissions models for vehicle simulations more difficult. Data were obtained to relate injections of carbon dioxide (CO2) into a tunnel with analyzer measurements. The analyzer response was found to match a gamma distribution of the input pulse, so that the analyzer output could be modeled from the tunnel CO2 input.
Technical Paper

Initial Investigations of a Novel Engine Concept for Use with a Wide Range of Fuel Types

1992-02-01
920057
The recent oil crisis has once again emphasized the need to develop both fuel efficient engines and alternately fueled engines, particularly for automotive applications. Engines which burn coal or coal pyrolysis products are attractive, but ignition delay and metal erosion problems continue to limit high speed operation of such engines. Further, the throttled spark ignition engine often used with methanol and natural gas does not prove an efficient or tolerant device for the combustion of a wide range of fuel. Therefore, an novel approach must be taken in order to achieve the efficient and flexible operation of such an engine. A novel design of a fuel tolerant engine suitable for burning coal fuels separates the combustion from the piston in order to have more careful flame control and to exclude the particulate matter from the engine's piston rings.
Technical Paper

Interim Results from Alternative Fuel Truck Evaluation Project

1999-05-03
1999-01-1505
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins L10-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 3176B Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.
Technical Paper

In-Cylinder Combustion Pressure Characteristics of Fischer-Tropsch and Conventional Diesel Fuels in a Heavy Duty CI Engine

1999-05-03
1999-01-1472
The emissions reduction benefits of Fischer-Tropsch (FT) diesel fuel have been shown in several recent published studies in both engine testing and in-use vehicle testing. FT diesel fuel shows significant advantages in reducing regulated engine emissions over conventional diesel fuel primarily to: its zero sulfur specification, implying reduced particulate matter (PM) emissions, its relatively lower aromaticity, and its relatively high cetane rating. However, the actual effect of FT diesel formulation on the in-cylinder combustion characteristics of unmodified modern heavy-duty diesel engines is not well documented. As a result, a Navistar T444E (V8, 7.3 liter) engine, instrumented for in-cylinder pressure measurement, was installed on an engine dynamometer and subjected to steady-state emissions measurement using both conventional Federal low sulfur pump diesel and a natural gas-derived FT fuel.
Technical Paper

Investigation of On-Road Crosswinds on Interstate Tractor-Trailer Aerodynamic Efficiency

2014-04-01
2014-01-0608
Heavy duty tractor-trailers under freeway operations consume about 65% of the total engine shaft energy to overcome aerodynamic drag force. Vehicles are exposed to on-road crosswinds which cause change in pressure distribution with a relative wind speed and yaw angle. The objective of this study was to analyze the drag losses as a function of on-road wind conditions, on-road vehicle position and trajectory. Using coefficient of drag (CD) data available from a study conducted at NASA Ames, Geographical Information Systems model, time-varying weather data and road data, a generic model was built to identify the yaw angles and the relative magnitude of wind speed on a given route over a given time period. A region-based analysis was conducted for a study on interstate trucking operation by employing I-79 running through West Virginia as a case study by initiating a run starting at 12am, 03/03/2012 out to 12am, 03/05/2012.
Technical Paper

Effect on Emissions of Multiple Driving Test Schedules Performed on Two Heavy-Duty Vehicles

2000-10-16
2000-01-2818
Chassis based emissions characterization of heavy-duty vehicles has advanced over the last decade, but the understanding of the effect of test schedule on measured emissions is still poor. However, this is an important issue because the test schedule should closely mimic actual vehicle operation or vocation. A wide variety of test schedules was reviewed and these cycles were classified as cycles or routes and as geometric or realistic. With support from the U.S. Department of Energy Office of Transportation Technologies (DOE/OTT), a GMC box truck with a Caterpillar 3116 engine and a Peterbilt over the road tractor-trailer with a Caterpillar 3406 engine were exercised through a large number of cycles and routes. Test weight for the GMC was 9,980 kg and for the Peterbilt was 19,050 kg. Emissions characterization was performed using a heavy-duty chassis dynamometer, with a full-scale dilution tunnel, analyzers for gaseous emissions, and filters for PM emissions.
Technical Paper

Characterization of Emissions from Hybrid-Electric and Conventional Transit Buses

2000-06-19
2000-01-2011
Hybrid-electric transit buses offer benefits over conventional transit buses of comparable capacity. These benefits include reduced fuel consumption, reduced emissions and the utilization of smaller engines. Factors allowing for these benefits are the use of regenerative braking and reductions in engine transient operation through sophisticated power management systems. However, characterization of emissions from these buses represents new territory: the whole vehicle must be tested to estimate real world tailpipe emissions levels and fuel economy. The West Virginia University Transportable Heavy Duty Emissions Testing Laboratories were used to characterize emissions from diesel hybrid-electric powered as well as diesel and natural gas powered transit buses in Boston, MA and New York City.
Technical Paper

Relationship between Carbon Monoxide and Particulate Matter Levels across a Range of Engine Technologies

2012-04-16
2012-01-1346
Relationships between diesel particulate matter (PM) mass and gaseous emissions mass produced by engines have been explored to determine whether any gaseous species may be used as surrogates to infer PM quantitatively. It was recognized that sulfur content of fuel might independently influence PM mass, since PM historically is composed of elemental carbon, organic carbon, sulfuric acid, ash and wear particles. Previous research has suggested that PM may be correlated with carbon monoxide (CO) for an engine that is exercised through a variety of speed and load cycles, but that the correlation does not extend to a group of engines. Large databases from the E-55/59 and Gasoline/Diesel PM Split programs were employed, along with the IBIS bus emissions database and several additional data sets for on- and off-road engines to examine possible relationships.
X