Refine Your Search

Topic

Search Results

Technical Paper

Series BEV with a Small Battery Pack and High-Efficiency ICE Onboard Electricity Production: B-Class, High-Roof Hatchback and Le Mans Hypercar Applications

2020-09-15
2020-01-2250
Data of battery electric vehicles (BEV) with and without a range extender internal combustion engines (ICE) are reviewed and integrated with weight and performance models. A BEV with an on-board, high efficiency, electricity generator based on positive ignition (PI) ICEs is proposed to improve the uptake of the BEV targeting city commuters while improving their economic and environmental impacts. The small ICE, that is working stationary, fixed load and speed, and the generator similarly optimized for a single point operation, permit an efficiency fuel chemical-to-electric of about 49%. This is much better than producing electricity centralized from combustion fuels (average efficiency with included distribution and recharging losses), and it does not require any electric recharging infrastructure. The range of cars can be extended to about the same values of today's car with traditional combustion engines.
Journal Article

A New Method to Warm Up Lubricating Oil to Improve the Fuel Efficiency During Cold Start

2011-04-12
2011-01-0318
Cold start driving cycles exhibit an increase in friction losses due to the low temperatures of metal and media compared to normal operating engine conditions. These friction losses are responsible for up to 10% penalty in fuel economy over the official drive cycles like the New European Drive Cycle (NEDC), where the temperature of the oil even at the end of the 1180 s of the drive cycle is below the fully warmed up values of between 100°C and 120°C. At engine oil temperatures below 100°C the water from the blowby condensates and dilutes the engine oil in the oil pan which negatively affects engine wear. Therefore engine oil temperatures above 100°C are desirable to minimize engine wear through blowby condensate. The paper presents a new technique to warm up the engine oil that significantly reduces the friction losses and therefore also reduces the fuel economy penalty during a 22°C cold start NEDC.
Journal Article

Novel Crankshaft Mechanism and Regenerative Braking System to Improve the Fuel Economy of Light Duty Vehicles and Passenger Cars

2012-09-10
2012-01-1755
Improvements of vehicle fuel economy may be achieved by the introduction of advanced internal combustion engines (ICE) improving the fuel conversion efficiency of the engine and of advanced power trains (PWT) reducing the amount of fuel energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the compression ratio hence generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load torque output of the engine.
Technical Paper

Optimizing the Design of the Air Flow Orifice or Restrictor for Race Car Applications

2007-08-05
2007-01-3553
Several race car competitions seek to limit engine power through a rule that requires all of the engine combustion air passes through a hole of prescribed diameter. As the approach and departure wall shapes to this hole, usually termed orifice or restrictor are not prescribed, there is opportunity for innovation in these shapes to obtain maximum flow and therefore power. This paper reports measurements made for a range of restrictor types including venturis with conical inlets and outlets of various angles and the application of slotted throats of the ‘Dall tube’ type. Although normal venturis have been optimized as subsonic flow measuring devices with minimum pressure losses, at the limit the flow in the throat is sonic and the down stream shocks associated with flow transition from sub-sonic to sonic are best handled with sudden angular changes and the boundary layer minimized by the corner slots between the convergent and divergent cones.
Technical Paper

Improvements of Vehicle Fuel Economy Using Mechanical Regenerative Braking

2010-10-10
2010-01-1683
Improvements of fuel economy of passenger cars and light- and heavy-duty trucks are being considered using a flywheel energy storage system concept to reduce the amount of mechanical energy produced by the thermal engine recovering the vehicle kinetic energy during braking and then assisting torque requirements. The mechanical system has an overall efficiency over a full regenerative cycle of about 70%, about twice the efficiency of battery-based hybrids rated at about 36%. The technology may improve the vehicle fuel economy and hence reduced CO₂ emissions by more than 30% over driving cycles characterized by frequent engine start/stop, and vehicle acceleration, brief cruising, deceleration and stop.
Technical Paper

Modeling of Engine and Vehicle for a Compact Car with a Flywheel Based Kinetic Energy Recovery Systems and a High Efficiency Small Diesel Engine

2010-10-25
2010-01-2184
Recovery of kinetic energy during driving cycles is the most effective option to improve fuel economy and reduce green house gas (GHG) emissions. Flywheel kinetic energy recovery systems (KERS) may boost this efficiency up to values of about 70%. An engine and vehicle model is developed to simulate the fuel economy of a compact car equipped with a TDI diesel engine and a KERS. Introduction of KERS reduces the fuel used by the 1.6L TDI engine to 3.16 liters per 100 km, corresponding to 82.4 g of CO₂ per km. Downsizing the engine to 1.2 liters as permitted by the torque assistance by KERS, further reduces the fuel consumption to 3.04 liters per 100 km, corresponding to 79.2 g of CO₂ per km. These CO₂ values are 11% better than those of today's most fuel efficient hybrid electric vehicle.
Technical Paper

Use of Variable Valve Actuation to Control the Load in a Direct Injection, Turbocharged, Spark-Ignition Engine

2010-10-25
2010-01-2225
Downsizing and Turbo Charging (TC) and Direct Injection (DI) may be combined with Variable Valve Actuation (VVA) to better deal with the challenges of fuel economy enhancement. VVA may control the load without throttle; control the valve directly and quickly; optimize combustion, produce large volumetric efficiency. Benefits lower fuel consumption, lower emissions and better performance and fun to drive. The paper presents an engine model of a 1.6 litre TDI VVA engine specifically designed to run pure ethanol, with computed engine maps for brake specific fuel consumption and efficiency. The paper also presents driving cycle results obtained with a vehicle model for a passenger car powered by this engine and a traditional naturally aspirated gasoline engine. Preliminary results of the VVA system coupled with downsizing, turbo charging and Direct Injection permits significant driving cycle fuel economies.
Technical Paper

Coupling of a KERS Powertrain and a 4 Litre Gasoline Engine for Improved Fuel Economy in a Full Size Car

2010-10-25
2010-01-2218
Improvements of vehicle fuel economy are being considered using a mechanically driven flywheel to reduce the amount of mechanical energy produced by the thermal engine recovering the vehicle kinetic energy during braking. A mechanical system having an overall efficiency over a full regenerative cycle of about 70%, about twice the efficiency of battery-based hybrids, is coupled to a naturally aspirated gasoline engine powering a full size sedan. Results of chassis dynamometer experiments and engine and vehicle simulations are used to evaluate the fuel benefits introducing a kinetic energy recovery system and downsizing of the engine. Preliminary results running the new European driving cycle (NEDC) show KERS may reduce fuel consumption by 25% without downsizing, and 33% with downsizing of the 4 litre engine to 3.3 litres.
Technical Paper

Coupling of a KERS Power Train and a Downsized 1.2TDI Diesel or a 1.6TDI-JI H2 Engine for Improved Fuel Economies in a Compact Car

2010-10-25
2010-01-2228
Recovery of braking energy during driving cycles is the most effective option to improve fuel economy and reduce green house gas (GHG) emissions. Hybrid electric vehicles suffer the disadvantages of the four efficiency-reducing transformations in each regenerative braking cycle. Flywheel kinetic energy recovery systems (KERS) may boost this efficiency up to almost double values of about 70% avoiding all four of the efficiency-reducing transformations from one form of energy to another and keeping the vehicle's energy in the same form as when the vehicle starts braking when the vehicle is back up to speed. With reference to the baseline configuration with a 1.6 liters engine and no recovery of kinetic energy, introduction of KERS reduces the fuel usage to 3.16 liters per 100 km, corresponding to 82.4 g of CO₂ per km. The 1.6 liters Turbo Direct Injection (TDI) diesel engine without KERS uses 1.37 MJ per km of fuel energy, reducing with KERS to 1.13 MJ per km.
Technical Paper

Improvements of Truck Fuel Economy using Mechanical Regenerative Braking

2010-10-05
2010-01-1980
Improvements of truck fuel economy are being considered using a flywheel energy storage system concept. This system reduces the amount of mechanical energy needed by the thermal engine by recovering the vehicle kinetic energy during braking and then assisting torque requirements. The mechanical system has an overall efficiency over a full regenerative cycle of about 70%, about twice the efficiency of battery-based hybrids rated at about 36%. The technology may improve the vehicle fuel economy and hence reduced CO₂ emissions by more than 30% over driving cycles characterized by: frequent engine start/stop, vehicle acceleration, brief cruising, deceleration and stop. The paper uses engine and vehicle simulations to compute: first the fuel benefits of the technology applied to passenger cars, then the extension of the technology to deal with heavy-duty vehicles.
Technical Paper

Piston and Valve Deactivation for Improved Part Load Performances of Internal Combustion Engines

2011-04-12
2011-01-0368
Cylinder deactivation has been proposed so far for improved part load operation of large gasoline engines. In all this application, the cylinder deactivation has been achieved keeping the intake and exhaust valves closed for a particular cylinder, with pistons still following their strokes. The paper presents a new mechanism between the piston and the crankshaft to enable selective deactivation of pistons, therefore decoupling the motion of the piston from the rotation of the crankshaft. The reduced friction mean effective pressure of the new technology enables the use of piston deactivation in large engines not necessarily throttle controlled but also controlled by quantity of fuel injected. Results of performance simulations are proposed for a HSDI V8 engine, producing significant savings during light operation.
Technical Paper

Exploring the Advantages of Variable Compression Ratio in Internal Combustion Engines by Using Engine Performance Simulations

2011-04-12
2011-01-0364
Variable compression ratio is the technology to adjust internal combustion engine cylinder compression ratio to increase fuel efficiency while under varying loads. The paper presents a new design of a variable compression ratio engine that allows for the volume above the piston at Top Dead Centre (TDC) to be changed. A modeling study is then performed using the WAVE engine performance simulation code for a naturally aspirated gasoline V8 engine. The modeling study shows significant improvements of fuel economy over the full range of loads and especially during light loads operation as well as an improvement of top power and torque outputs.
Technical Paper

Exploring the Advantages of Atkinson Effects in Variable Compression Ratio Turbo GDI Engines

2011-04-12
2011-01-0367
The Atkinson cycle engine is basically an engine permitting the strokes to be different lengths for improved light loads fuel economies. Variable compression ratio is the technology to adjust internal combustion engine cylinder compression ratio to increase fuel efficiency while under varying loads. The paper presents a new design of a variable compression ratio engine that also permits an expansion ratio that may differ from the compression ratio therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine.
Technical Paper

KERS Braking for 2014 F1 Cars

2012-09-17
2012-01-1802
Small, high power density turbocharged engines coupled to kinetic energy recovery systems are one of the key areas of development for both passenger and racing cars. In passenger cars, the KERS may reduce the amount of thermal energy needed to reaccelerate the car following a deceleration recovering part of the braking energy. This translates in a first, significant fuel energy saving. Also considering the KERS torque boost increasing the total torque available to accelerate the car, large engines working at very low brake mean effective pressures and efficiencies over driving cycles may also be replaced by small higher power density engines working at much higher brake mean effective pressures and therefore much higher part load efficiencies. In racing cars, the coupling of small engines to KERS may improve the perception of racing being more environmentally friendly. The KERS is more a performance boost than a fuel saving device, permitting about same lap times with smaller engines.
Technical Paper

Design of Rankine Cycle Systems to Deliver Fuel Economy Benefits over Cold Start Driving Cycles

2012-09-10
2012-01-1713
Prior papers have shown the potentials of gasoline-like internal combustion engines fitted with waste heat recovery systems (WHR) to deliver Diesel-like steady state fuel conversion efficiencies recovering the exhaust and the coolant waste heat with off-the-shelf components. In addition to the pros of the technology significantly increasing steady state efficiencies - up to 5 % in absolute values and much more in relative values - these papers also mentioned the cons of the technology, increased back pressures, increased weight, more complex packaging, more complex control, troublesome transient operation, and finally the cold start issues that prevent the uptake of the technology. This paper further explores the option to use Rankine cycle systems to improve the fuel economy of vehicles under normal driving conditions. A single Rankine cycle system is integrated here with the engine design.
Technical Paper

Improving the Efficiency of Turbocharged Spark Ignition Engines for Passenger Cars through Waste Heat Recovery

2012-04-16
2012-01-0388
The turbocharged direct injection stoichiometric spark ignition gasoline engine has less than Diesel full load brake engine thermal efficiencies and much larger than Diesel penalties in brake engine thermal efficiencies reducing the load by throttling. This engine has however a much better power density, and therefore may operate at much higher BMEP values over driving cycles reducing the fuel economy penalty of the vehicle. This engine also has the advantage of the very well developed three way catalytic converter after treatment to meet future emission regulations. In these engines the efficiency may be improved recovering the waste heat, but this recovery may have ultimately impacts on both the in cylinder fuel conversion efficiency and the efficiency of the after treatment.
Technical Paper

A Novel Valve-Less Supercharged Small Two Stroke Engine of Top Brake Efficiency Above 36% and Power Density above 100 KW/Liter

2013-11-27
2013-01-2772
The paper presents a novel design for a two stroke thermal engine that delivers excellent fuel economy and low emissions within the constraints of today's cost, weight and size. The engine features asymmetrical port timing through a novel translating and rotating piston mechanism. The engine is externally scavenged and supercharged, has wet sump and oil pressure lubrication, direct injection, it is lightweight, easy to build, with minimal number of parts, low production cost, ability to be balanced and compact design. The two stroke mechanism produces a linear motion of the pistons as well as an elliptical path on the surface of the cylinder. This allows the piston to sweep as well as travel past the ports. Suitable slots around the raised lip of the piston generate the asymmetry that makes the exhaust port to open first and to close first. The inlet port remains open to complete the cylinder charging and allow supercharging. Direct fuel injection is adopted for best results.
Technical Paper

Reduced Warm-Up and Recovery of the Exhaust and Coolant Heat with a Single Loop Turbo Steamer Integrated with the Engine Architecture in a Hybrid Electric Vehicle

2013-11-27
2013-01-2827
The paper considers a novel waste heat recovery (WHR) system integrated with the engine architecture in a hybrid electric vehicle (HEV) platform. The novel WHR system uses water as the working media and recovers both the internal combustion engine coolant and exhaust energy in a single loop. Results of preliminary simulations show a 6% better fuel economy over the cold start UDDS cycle only considering the better fuel usage with the WHR after the quicker warm-up but neglecting the reduced friction losses for the warmer temperatures over the full cycle.
Technical Paper

Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle

2013-11-27
2013-01-2872
Kinetic energy recovery systems (KERS) placed on one axle coupled to a traditional thermal engine on the other axle is possibly the best solution presently available to dramatically improve the fuel economy while providing better performances within strict budget constraints. Different KERS may be built purely electric, purely mechanic, or hybrid mechanic/electric differing for round trip efficiency, packaging, weights, costs and requirement of further research and development. The paper presents an experimental analysis of the energy flow to and from the battery of a latest Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS). This analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles with off-the-shelve technologies.
Technical Paper

Analysis of Design of Pure Ethanol Engines

2010-05-05
2010-01-1453
Ethanol, unlike petroleum, is a renewable resource that can be produced from agricultural feed stocks. Ethanol fuel is widely used by flex-fuel light vehicles in Brazil and as oxygenate to gasoline in the United States. Ethanol can be blended with gasoline in varying quantities up to pure ethanol (E100), and most modern gasoline engines well operate with mixtures of 10% ethanol (E10). E100 consumption in an engine is higher than for gasoline since the energy per unit volume of ethanol is lower than for gasoline. The higher octane number of ethanol may possibly allow increased power output and better fuel economy of pure ethanol engines vs. flexi-fuel engines. High compression ratio ethanol only vehicles possibly will have fuel efficiency equal to or greater than current gasoline engines.
X