Refine Your Search

Topic

Search Results

Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Journal Article

Effect of Start of Injection on the Particulate Emission from Methanol Fuelled HCCI Engine

2011-12-06
2011-01-2408
New combustion concepts developed in internal combustion engines such as homogeneous charge compression ignition (HCCI) have attracted serious attention due to the possibilities to simultaneously achieve higher efficiency and lower emissions, which will impact the environment positively. The HCCI combustion concept has potential of ultra-low NOX and particulate matter (PM) emission in comparison to a conventional gasoline or a diesel engine. Environmental Legislation Agencies are becoming increasingly concerned with particulate emissions from engines because the health and environmental effects of particulates emitted are now known and can be measured by sophisticated instruments. Particulate emissions from HCCI engines have been usually considered negligible, and the measurement of mass emission of PM from HCCI combustion systems shows their negligible contribution to PM mass. However some recent studies suggest that PM emissions from HCCI engines cannot be neglected.
Journal Article

Particulate Morphology and Toxicity of an Alcohol Fuelled HCCI Engine

2014-04-15
2014-01-9076
Homogeneous charge compression ignition (HCCI) engines are attracting attention as next-generation internal combustion engines mainly because of very low NOx and PM emission potential and excellent thermal efficiency. Particulate emissions from HCCI engines have been usually considered negligible however recent studies suggest that PM number emissions from HCCI engines cannot be neglected. This study is therefore conducted on a modified four cylinder diesel engine to investigate this aspect of HCCI technology. One cylinder of the engine is modified to operate in HCCI mode for the experiments and port fuel injection technique is used for preparing homogenous charge in this cylinder. Experiments are conducted at 1200 and 2400 rpm engine speeds using gasoline, ethanol, methanol and butanol fuels. A partial flow dilution tunnel was employed to measure the mass of the particulates emitted on a pre-conditioned filter paper.
Technical Paper

Measurement of Lubricating Oil Film Thickness between Piston Ring -liner Interface in an Engine Simulator

2008-01-09
2008-28-0071
The interface between the piston rings and cylinder liner play an important role in total frictional losses and mechanical wear of internal combustion engine and is increasingly coming under scrutiny as legislated particulate emission standards are getting more and more stringent. The capacitance method is used for measurement of minimum oil film thickness between piston ring and liner interface. Measurement of capacitance formed between the piston ring and a probe mounted flush in the liner provides an accurate means of determining the oil film thickness provided that the region between the probe and liner is flooded with oil and dielectric constant of the oil is known. This paper presents detailed design and measurement of lubricating oil film thickness using capacitive micro sensor in a non-firing engine simulator. Lubricating oil film thickness was found to vary between 0.2μm to 8μm in the non firing engine simulator.
Technical Paper

Particulate Characterization of Biodiesel Fuelled Compression Ignition Engine

2009-12-13
2009-28-0018
Environmental concerns have increased significantly world over in the past decade. Regulatory agencies are becoming increasingly concerned with particulate emissions as the health and environmental effects are getting understood better due to rapid development in instrumentation. Biodiesel is one of the most promising alternative diesel fuels, which is getting global acceptability among the automotive/ engine manufactures as well as users due to numerous benefits it offers over the conventional diesel. While much of literature is available on particulate emitted by diesel fuelled engine, little is known by particulate emissions from biodiesel fuelled compression ignition (CI) engine. This study concentrates on the characterization of particulate emissions from mineral diesel vis-à-vis biodiesel (B100) and its optimum blend (20%, B20) with mineral diesel.
Technical Paper

The Secondary Organic Carbon (SOC) Formation from a CRDI Automotive Diesel Engine Exhaust

2011-04-12
2011-01-0642
Condensed soot coming out of vehicular exhaust is commonly classified as organic carbon (OC) and elemental carbon (EC). OC can be directly emitted to the atmosphere in the particulate form (primary carbon) from the tailpipe or can be produced by gas-to-particle conversion process (secondary organic carbon, SOC). Under typical atmospheric dilution conditions, most of the semi-volatile material is present in the form of soot. SOC holds wider implications in terms of their adverse health and climate impact. Diesel exhaust is environmentally reactive and it has long been understood that the ambient interaction of exhaust hydrocarbons and NOx results in the formation of ozone and other potentially toxic secondary organic carbon species. The current emission norms look at the primary emissions from the engine exhaust. Also, research efforts are geared towards controlling the emissions of primary carbon.
Technical Paper

Macroscopic and Microscopic Spray Characteristics of Diesel and Karanja Biodiesel Blends

2016-04-05
2016-01-0869
Fuel injection pressure (FIP) is one of the most important factors affecting diesel engine performance and particulate emissions. Higher FIP improves the fuel atomization, which results in lower soot formation due to superior fuel-air mixing. The objective of this spray study was to investigate macroscopic and microscopic spray parameters in FIP range of 500-1500 bar, using a solenoid injector for biodiesel blends (KB20 and KB40) and baseline mineral diesel. For these test fuels, effect of ambient pressure on macroscopic spray characteristics such as spray penetration, spray area and cone angle were investigated in a constant volume spray chamber (CVSC). Microscopic spray characteristics such as velocity distribution of droplets and spray droplet size distribution were measured in the CVSC at atmospheric pressure using Phase Doppler Interferometry (PDI).
Technical Paper

Tomographic PIV Evaluation of In-Cylinder Flow Evolution and Effect of Engine Speed

2016-04-05
2016-01-0638
In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
Technical Paper

Experimental Investigation on Intake Air Temperature and Air-Fuel Ratio Dependence of Random and Deterministic Cyclic Variability in a Homogeneous Charge Compression Ignition Engine

2011-04-12
2011-01-1183
Due to the increasingly stricter emission legislations and growing demand for lower fuel consumption, there have been significant efforts to improve combustion efficiency, while satisfying the emission requirements. Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI, fully homogeneous charge HCCI combustion can be realized only in a limited operating range. Control of HCCI engines to obtain the desirable operation requires understanding of how different charge variables influence the cyclic variations in HCCI combustion. Under certain operating conditions, HCCI engines exhibit large cyclic variations in ignition timing. Cyclic variability ranging from stochastic to deterministic patterns can be observed. One important design goal for engine development is to minimize cyclic variability.
Technical Paper

CI/PCCI Combustion Mode Switching of Diesohol Fuelled Production Engine

2017-03-28
2017-01-0738
Premixed charge compression ignition (PCCI) combustion is an advanced combustion technique, which has the potential to be operated by alternative fuels such as alcohols. PCCI combustion emits lower oxides of nitrogen (NOx) and particulate matter (PM) and results thermal efficiency similar to conventional compression ignition (CI) engines. Due to extremely high heat release rate (HRR), PCCI combustion cannot be used at higher engine loads, which make it difficult to be employed in production grade engines. This study focused on development of an advanced combustion engine, which can operate in both combustion modes such as CI combustion as well as PCCI combustion mode. This Hybrid combustion system was controlled by an open engine control unit (ECU), which varied the fuel injection parameters for mode switching between CI and PCCI combustion modes.
Technical Paper

Comparative Study of PM Mass and Chemical Composition from Diesel and Biodiesel Fuelled CRDI SUV Engine

2012-01-09
2012-28-0012
Adverse health effects of particulate matter (PM) originating from diesel engine exhaust are largely attributed to the complex chemical composition of the exhaust species. This study was set out to characterize particulate emissions from a Euro-III-compliant modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at rated engine speed (1800 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. This study is mainly divided into two main sections, first one includes the gravimetric analysis in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICPOES). The second section includes real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs).
Technical Paper

Experimental Investigations of Gasoline HCCI Engine during Startup and Transients

2011-12-15
2011-01-2445
The homogeneous charge compression ignition (HCCI) combustion process is capable of providing both high ‘diesel-like’ efficiencies and very low NOx and particulate emissions. However, among several technical challenges, controlling the combustion phasing, particularly during transients is a major issue, which must be resolved to exploit its commercial applications. This study is focused on the experimental investigations of behavior of combustion timing and other combustion parameters during startup and load transients. The study is conducted on a gasoline fuelled HCCI engine by varying intake air temperature and air-fuel ratio at different engine speeds. Port fuel injection technique is used for preparing homogeneous mixture of gasoline and air. For fueling startup transient test, fuel injection was turned off, and the engine was motored for several minutes until the fire-deck, intake and exhaust temperatures stabilized.
Technical Paper

Experimental Investigation of Close-Loop Control of HCCI Engine Using Dual Fuel Approach

2013-04-08
2013-01-1675
Homogeneous Charge Compression Ignition (HCCI) offers great promise for excellent fuel economy and extremely low emissions of NOx and PM. HCCI combustion lacks direct control on the "start of combustion" such as spark timing in SI engines and fuel injection timing in CI engines. Auto ignition of a homogeneous mixture is very sensitive to operating conditions of the engine. Even small variations of the load can change the timing from "too early" to "too late" combustion. Thus a fast combustion phasing control is required since it sets the performance limitation of the load control. Crank angle position for 50% heat release is used as combustion phasing feedback parameter. In this study, a dual-fuel approach is used to control combustion in a HCCI engine. This approach involves controlling the combustion heat release rate by adjusting fuel reactivity according to the conditions inside the cylinder. Two different octane fuels (methanol and n-heptane) are used for the study.
Technical Paper

Comparative Evaluation of Turbochargers for High Horsepower Diesel-Electric Locomotives

2013-04-08
2013-01-0930
Indian Railways have a fleet of high-horsepower diesel-electric locomotives rated at 2310 kW. These high horsepower diesel-electric locomotives have evolved from original design of 1940 kW locomotives. Adoption of new design turbochargers was essential for this upgrading efforts and a series of new design turbochargers were evaluated on the engine test-bed before their use on the diesel locomotives. The objective was to increase engine power output, improve fuel efficiency and limit thermal loading. Test-bed evaluation of different turbochargers was carried out for comparing five different turbochargers. Each turbocharger had different size nozzle ring, diffuser, turbine blade assembly, impeller and inducer. The compressor maps of turbochargers were used to plot the engine load lines and to calculate surge margins. The tests involved measuring critical parameters for various combinations of engine speed and load for every turbocharger.
Technical Paper

Effect of Multiple Injections on Particulate Size-Number Distributions in a Common Rail Direct Injection Engine Fueled with Karanja Biodiesel Blends

2013-04-08
2013-01-1554
Use of alternative fuels, and reduction of particulate and NOx emissions are major challenges for making diesel engines environmentally benign. Measures adopted for reducing gravimetric particulate emissions necessarily always do not reduce particulate number concentration, which is strongly related with adverse health effects. Current emission norms in some parts of the world limit particulate number concentration along with particulate mass. In this scenario, it becomes important to investigate effect of fuel injection parameters and fuel injection strategies such as pilot injections on particulate size-number distribution. A single cylinder research engine is used to evaluate the effect of different fuel injection strategies and injection timings (for pilot and main injections) on particulate size-number distribution and total particulate numbers.
Technical Paper

Evaluation of Steel Cap Piston for Upgradation of Diesel Electric Locomotives for Indian Railways

2005-04-11
2005-01-1645
This paper deals with the evaluation of steel cap pistons for up-gradation of diesel electric locomotives for Indian Railways. These engines are four stroke, medium speed compression ignition engines (CR 12.5: 1) with output of 121 kW per cylinder on series 1 and 167 kW per cylinder on series 2. The series 1 engine uses single piece aluminum pistons, with rating of 0.295 kW/cm2 of piston crown area. A higher version of the series 1 engine with higher fuel efficiency and improvement in lube oil consumption was developed. As part of this improvement program, a composite steel cap piston with forged aluminum skirt was used. The whole engine up-gradation kit including the higher capacity turbocharger, higher fuel delivery pressure fuel pump, modified cam shaft, larger after-cooler along with the steel cap piston were evaluated for performance.
Technical Paper

Diesel Exhaust Particulate Characterization for Poly Aromatic Hydrocarbons and Benzene Soluble Fraction

2005-10-23
2005-26-348
This study was set out to characterize particulate emissions from diesel engines in terms of poly aromatic hydrocarbon emissions and Benzene Soluble Organic Fraction. The characteristics of DPM vary with engine operating conditions, quality of fuel and lubricants being used. Hence the diesel exhaust for the purpose of toxicity characterization needs to be studied for Organic Matter in terms of Poly Aromatic Hydrocarbon (PAH) and Benzene Soluble Fraction (BSF). Therefore, the objectives of the present research are to characterize the diesel exhaust particulate matter for the above parameters under varying engine operating conditions/loads. Six PAHs, namely Chrysene, Benzo (k) Flouranthene, Benzo (a) Pyrene, Dibenzo (a, h) Anthracene, Benzo (g,h,i) Perylene and Indenopyrene were analyzed on High Pressure Liquid Chromatography (HPLC). PAH concentrations in the particulates of Mahindra DI engine were affected by engine loads.
Technical Paper

Evaluation of Lanthanum Based Diesel Oxidation Catalyst for Emission Reduction with and without Ceria Support

2016-02-01
2016-28-0023
Diesel particulates are mainly composed of elemental carbon (EC) and organic carbon (OC) with traces of metals, sulfates and ash content. Organic fraction of the particulate are considered responsible for its carcinogenic effects. Diesel oxidation catalyst (DOC) is an important after-treatment device for reduction of organic fraction of particulates. In this study, two non-noble metal based DOCs (with different configurations) were prepared and evaluated for their performance. Lanthanum based perovskite (LaMnO3) catalyst was used for the preparation of DOCs. One of the DOC was coated with support material ceria (5%, w/w), while the other was coated without any support material. Prepared DOCs were retrofitted in a four cylinder water cooled diesel engine. Various emission parameters such as particulate mass, particle number-size distribution, regulated and unregulated emissions, EC/OC etc., were measured and compared with the raw exhaust gas emissions from the prepared DOCs.
Technical Paper

Effect of Intake Charge Temperature and EGR on Biodiesel Fuelled HCCI Engine

2016-02-01
2016-28-0257
IC engines are facing two major challenges in the 21st century namely threat of fossil fuel depletion and environmental concerns. HCCI engine is an attractive solution to meet stringent emission challenges due to its capability to simultaneously reduce NOx and PM. HCCI technology can be employed with different alternative fuels without significant modifications in the existing engines. In this study, HCCI combustion was investigated using B20 (20% v/v biodiesel with diesel). Investigations were carried out on a two cylinder engine, in which one cylinder was modified to operate in HCCI mode however the other cylinder operated in conventional CI combustion mode. A dedicated fuel vaporizer was used for homogeneous fuel-air mixture preparation. The experiments were performed at three different intake charge temperatures (160°C, 180°C and 200°C) and three different EGR ratios (0%, 10% and 20% EGR) at different engine loads.
Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
X