Refine Your Search


Search Results

Technical Paper

Laboratory Postmortem Analysis of 120k mi Engine Aged Urea SCR Catalyst

Selective Catalytic Reduction (SCR) of NOx with aqueous urea and a Catalyzed Diesel Particulate Filter (CDPF) has been considered as one of the emission control systems for diesel vehicles required to meet Federal Tier 2 and California LEVII emission standards. At Ford Motor Company, a DOC-SCR-CDPF system containing a copper / zeolite SCR catalyst was aged to 120k mi on the engine dynamometer using an aging cycle that mimicked both city and highway driving modes. A total of 643 CDPF regenerations occurred during the aging that raised the SCR catalyst to a temperature of up to 650°C on a regular basis. A series of lab analyses including activity tests, ammonia thermal desorption, BET surface area, XRF, XRD, and EPMA was conducted on cores taken from the 120k mi engine aged SCR catalyst brick. The lab post-mortem characterizations revealed the changes of catalyst properties, and the deterioration profile of the SCR catalyst brick after undergoing real aging conditions.
Technical Paper

Laboratory and Engine Study of Urea-Related Deposits in Diesel Urea-SCR After-Treatment Systems

Diesel exhaust systems equipped with selective catalytic reduction (SCR) catalysts based on urea were subjected to an aging process where the exhaust gas temperature was below 300°C. Solid deposits related to urea injection were found on the wall of the exhaust pipe down stream of the urea injector and on a urea mixer in front of the SCR catalyst. In laboratory tests, an aqueous solution of urea (1.5wt%) was dripped onto an SCR catalyst core in a simulated lean gas mixture at a rate corresponding to a 1:1 NH3-to-NOx ratio (NOx = 350ppm) and a space velocity (SV) of 15,000 h-1 at various temperatures. At 300°C and below, urea-related deposits appeared on the SCR catalyst surface and totally plugged the SCR catalyst monolith within 250 hours. When the aging temperature was 350°C or above, no deposits were observed on the SCR catalyst core.
Technical Paper

The Influence of Ammonia to NOX Ratio on SCR Performance

It is likely that use of urea-based selective catalytic reduction (SCR) will be needed to meet U.S. Tier 2 diesel emission standards for oxides of nitrogen (NOx). The ideal ratio of ammonia (NH3) molecules to NOx molecules (known as alpha) is 1:1 based on urea consumption and having NH3 available for reaction of all of the exhaust NOx. However, SCR efficiency can be less than 100% at low temperatures in general, and at higher temperatures with high exhaust SCR catalyst space velocities. At the low temperatures where NOx conversion efficiency is low, it may be advantageous to reduce the alpha ratio to values less than one (less NH3 than is needed to convert 100% of the NOx emissions) to avoid NH3 slip. At higher space velocities and high temperatures, the NOx conversion efficiency may be higher with alpha ratios greater than 1. There is however concern that the additional NH3 will be slipped under these conditions.
Technical Paper

Application of Urea SCR to Light-Duty Diesel Vehicles

Diesel vehicles have significant advantages over their gasoline counterparts including a more efficient engine, higher fuel economy, and lower emissions of HC, CO, and CO2. However, NOx control is more difficult on a diesel because of the high O2 concentration in the exhaust, making conventional three-way catalysts ineffective. The most promising technology for continuous NOx reduction onboard diesel vehicles is Selective Catalytic Reduction (SCR) using aqueous urea. Recent work with urea SCR has involved aftertreatment for the 1.2L DIATA common-rail diesel engine. This engine was used in Ford's hybrid-electric vehicle, the Prodigy, which was developed under the PNGV (Partnership for a New Generation of Vehicles) program. An emission control system consisting of a diesel particulate filter followed by an underbody SCR system was used successfully to meet ULEV emission standards (0.2 g/mi NOx, 0.04 g/mi particulate matter (PM)).
Technical Paper

Protection of Aftertreatment Systems from Sulfur, PASS-2™ - Advanced System Design Evaluation

This study was performed by the Department of Engine and Emissions Research under an SwRI® Internal Research and Development Program. The objective of the study was to evaluate the effectiveness of a system design that was an advancement over SwRI's patented Protection of Aftertreatment Systems from Sulfur (PASS™) technology.[1, 2] A Lean NOx Trap (LNT) was employed as the sulfur-sensitive emissions reduction device. Lean Sulfur Traps (LST) and Rich Sulfur Traps (RST) were formulated to provide the sulfur protection. Testing was performed to evaluate the efficiency of the LNT, the sulfur poisoning of the LNT, the efficiency of the LST, and the regeneration and protection characteristics of the PASS-2™ system. The program successfully demonstrated that an LST upstream of an LNT does provide protection for the LNT from the adverse effects of fuel-borne sulfur.
Technical Paper

A Novel Approach for Diesel NOX/PM Reduction

The US EPA emission standards for 2010 on-highway and 2014 non-road diesel engines are extremely stringent, both in terms of oxides of nitrogen (NOX) and particulate matter (PM). Diesel engines typically operate lean and use at least 40-50 percent more air than what is needed for stoichiometric combustion of the fuel. As a result, significant excess oxygen (O₂) is present in diesel exhaust gas which prevents the application of the mature three-way catalyst (TWC) technology for NOX control used in gasoline engines. The objective of this work was to investigate whether or not the catalyzed DPF had a TWC-type of effect on NOX emissions and if so, why and to what extent when used on a diesel engine operating at reduced A/F ratio conditions.
Technical Paper

The Effects of SO2 and SO3 Poisoning on Cu/Zeolite SCR Catalysts

Copper/zeolite catalysts are the leading urea SCR catalysts for NOx emission treatment in diesel applications. Sulfur poisoning directly impacts the overall SCR performance and is still a durability issue for Cu/zeolite SCR catalysts. Most studies on sulfur poisoning of Cu/zeolite SCR catalysts have been based on SO2 as the poisoning agent. It is important to investigate the relative poisoning effects of SO3, especially for systems with DOCs in front of Cu/zeolite SCR catalysts. It was observed that SCR activity was significantly reduced for samples poisoned by SO3 vs. those poisoned by SO2. The sulfur was released mainly as SO2 for both samples poisoned by SO2 and SO3. The temperatures and the magnitudes of released SO2 peaks however, were very different between the samples poisoned by SO2 vs. SO3. The results indicate that sulfur poisoning by SO2 and SO3 are not equivalent, with different poisoning mechanisms and impacts.
Technical Paper

Cold Start Performance and Enhanced Thermal Durability of Vanadium SCR Catalysts

For diesel applications, cold start accounts for a large amount of the total NOx emissions during a typical Federal Test Procedure (FTP) for light-duty vehicles and is a key focus for reducing NOx emissions. A common form of diesel NOx aftertreatment is selective catalytic reduction (SCR) technology. For cold start NOx improvement, the SCR catalyst would be best located as the first catalyst in the aftertreatment system; however, engine-out hydrocarbons and no diesel oxidation catalyst (DOC) upstream to generate an exotherm for desulfation can result in degraded SCR catalyst performance. Recent advances in vanadia-based SCR (V-SCR) catalyst technology have shown better low temperature NOx performance and improved thermal durability. Three V-SCR technologies were tested for their thermal durability and low-temperature NOx performance, and after 600°C aging, one technology showed low-temperature performance on par with state-of-the-art copper-zeolite SCR (Cu-SCR) technology.
Technical Paper

Methodologies to Control DPF Uncontrolled Regenerations

Diesel particulate filters (DPF) have been shown to effectively reduce particulate emissions from diesel engines. However, uncontrolled DPF regeneration can easily damage the DPF. In this paper, three different types of uncontrolled DPF regeneration are defined. They are: Type A: Uncontrolled high initial exotherm at the start of DPF regeneration, Type B: “Runaway” or uncontrolled regeneration, which takes place when the engine goes to idle during normal DPF regeneration, and Type C: Uneven soot distribution causing excess thermal stress during normal DPF regeneration. In this paper, different control strategies are developed for each of the three types of uncontrolled DPF regenerations. These control strategies include SOF control, exhaust flow pattern improvement, as well as EGR control through intake throttling and A/F ratio control.
Technical Paper

A Modeling Analysis of Fibrous Media for Gasoline Particulate Filters

With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
Technical Paper

Gasoline Particulate Filter Efficiency and Backpressure at Very Low Mileage

The need for gasoline particulate filter (GPF) technology is expected to grow with increasingly tight particle emissions standards being implemented in US, EU, China and elsewhere. Derived from the successful experience with diesel particulate filters (DPF), GPFs adopted the characteristic alternately plugged honeycomb structure that provides a large area of porous cordierite wall for filtering particles with minimal additional backpressure. However, unlike DPFs, continuous soot regeneration in GPFs makes it difficult to grow and sustain the soot cake on the filter wall that gives DPFs their high filtration efficiency. Therefore, filtration performance of low mileage GPFs relies heavily on the porous structure of filter media, which depends on both the substrate and the applied washcoat. In this work, a blank, two fresh washcoated filters and two washcoated filters with 3000 km mileage accumulation were characterized to compare their filtration performance.
Technical Paper

Using Artificial Ash to Improve GPF Performance at Zero Mileage

Gasoline particulate filters (GPF) with high filtration efficiency (>80%) at zero mileage are in growing demand to meet increasingly tight vehicle emission standards for particulate matter being implemented in US, EU, China and elsewhere. Current efforts to achieve high filter performance mainly focus on fine-tuning the filter structure, such as the pore size distribution and porosity of the bare substrate, or the washcoat loading and location of catalyzed substrates. However, high filtration efficiency may have a cost in high backpressure that negatively affects engine power. On the other hand, it has been recognized in a few reports that very low amounts of ash deposits (from non-combustible residue in the exhaust) can significantly increase filtration efficiency with only a mild backpressure increase.
Technical Paper

Exhaust Heating System Performance for Boosting SCR Low Temperature Efficiency

Real world driving conditions and tightening legislations require improved performance of aftertreatment systems at lower temperatures. Electric heat has been shown to be an effective method of heating exhaust, but having a practical means to provide power and control for the heater has been a barrier for implementation. Recent testing has demonstrated the ability of a 24Vdc heating and control system to effectively heat exhaust using only conventional alternator and battery power sources. Results from transient cycles show the effectiveness of the electrical system and the extent of exhaust heating.
Technical Paper

Development of Robust Electric Heating System for Medium Duty Diesel Vehicles

Tightening regulations throughout the world demand a reduction in fuel consumption and NOX emission levels, creating an increasing need for additional heat for SCR aftertreatment. A durable and low cost heating system is needed for vehicles with hybrid or 24Vdc electricity. Recent development efforts have resulted in much smaller and lower cost heating systems for electrical systems ranging from 400 to 24Vdc. Test results demonstrate the feasibility of reducing the size of the heater and the relationship of heater power to the amount of time required to heat the exhaust. Intelligent solid state switching enables the heater to be smaller without compromising durability.
Technical Paper

Integration of Exhaust Gas Recirculation, Selective Catalytic Reduction, Diesel Particulate Filters, and Fuel-Borne Catalyst for NOx/PM Reduction

Exhaust gas recirculation (EGR) has long been used in gasoline and light-duty diesel engines as a NOx reduction tool. Recently imposed emission regulations led several heavy-duty diesel engine manufacturers to adopt EGR as part of their strategy to reduce NOx. The effectiveness of this technology has been widely documented, with NOx reduction in the range of 40 to 50 percent having been recorded. An inevitable consequence of this strategy is an increase in particulate emission, especially if EGR was used in high engine load modes. Selective catalytic reduction (SCR), a method for NOx reduction, is widely used in stationary applications. There is growing interest and activity to apply it to mobile fleets equipped with heavy-duty diesel engines. Results of this work indicate that SCR has the potential to dramatically reduce NOx in diesel exhaust. Reductions greater than 70 percent were reported by several including the Institute's previous work (SAE Paper No. 1999-01-3564).
Technical Paper

Performance Evaluation of Advanced Emission Control Technologies for Diesel Heavy-Duty Engines

To evaluate the performance of a variety of commercially available exhaust emission control technologies, the Manufacturers of Emission Controls Association (MECA) sponsored a test program at Southwest Research Institute (SwRI). The test engine was a current design heavy-duty diesel engine operated on standard No. 2 diesel (368 ppm) and lower sulfur (54 ppm) diesel fuel. Technologies evaluated included: diesel oxidation catalysts (DOCs), diesel particulate filters (DPFs), selective catalytic reduction (SCR), fuel-borne catalysts (FBCs) in combination with filters and oxidation catalysts, and combinations of the above technologies. The program was structured to demonstrate that a variety of exhaust emission control technologies, including exhaust gas recirculation, could be used to substantially reduce emissions from a modern MY 1998 heavy-duty diesel engine.
Technical Paper

Achieving Heavy-Duty Diesel NOx/PM Levels Below the EPA 2002 Standards--An Integrated Solution

The diesel engine has long been the most energy efficient powerplant for transportation. Moreover, diesels emit extremely low levels of hydrocarbon and carbon monoxide that do not require post-combustion treatment to comply with current and projected standards. It is admittedly, however, difficult for diesel engines to simultaneously meet projected nitrogen oxides and particulate matter standards. Traditionally, measures aimed at reducing one of these two exhaust species have led to increasing the other. This physical characteristic, which is known as NOx/PM tradeoff, remains the subject of an intense research effort. Despite this challenge, there is significant evidence that heavy-duty highway engine manufacturers can achieve substantial emission reductions. Many development programs carried out over the last five years have yielded remarkable results in laboratory demonstrations.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Combined Fe-Cu SCR Systems with Optimized Ammonia to NOx Ratio for Diesel NOx Control

Selective catalytic reduction (SCR) is a viable option for control of oxides of nitrogen (NOx) from diesel engines. Currently, copper zeolite (Cu-zeolite) SCR catalysts are favored for configurations where the exhaust gas temperature is below 450°C for the majority of operating conditions, while iron zeolite (Fe-zeolite) SCR catalysts are preferred where NOx conversion is needed at temperatures above 450°C. The selection of Cu-zeolite or Fe-zeolite SCR catalysts is based on the different performance characteristics of these two catalyst types. Cu-zeolite catalysts are generally known for having efficient NOx reduction at low temperatures with little or no NO2, and they tend to selectively oxidize ammonia (NH3) to N2 at temperatures above 400°C, leading to poor NOx conversion at elevated temperatures.
Journal Article

Deactivation of Cu/Zeolite SCR Catalyst Due To Reductive Hydrothermal Aging

Temperature programmed reduction by CO, H2, and propylene (C3H6), as well as hydrothermal aging in the presence of mixture of NO, HC, CO, H2 and O2 were used to study the deactivation of Cu/zeolite SCR catalysts. The presence of CO had no detrimental effect on catalyst activity. Carbonaceous deposit on the catalyst surface from propylene (C3H6) reduction suppressed the catalyst activity and burn off of carbonaceous deposit recovered activity, the presence of O2 suppressed carbonaceous deposit formation. The presence of H2 under lean conditions had much less effect on catalyst activity than H2 presence under rich conditions. Rich conditions with O2 presence represented the most detrimental effect on catalyst activity.