Refine Your Search

Search Results

Journal Article

High-Pressure Hydrogen Jet and Combustion Characteristics in a Direct-Injection Hydrogen Engine

2011-08-30
2011-01-2003
Hydrogen spark-ignition (SI) engines based on direct-injection (DI) promise significant advantages in terms of thermal efficiency and power output, as well as a means of overcoming problems related to knocking, backfiring, and pre-ignition. In a DI hydrogen engine, the fuel/air mixture is formed by injecting a jet of hydrogen into the air inside the combustion chamber. An Ar-ion laser beam was used as a light source to visualize the hydrogen jet in a constant-volume chamber. This allowed us to study the structure of the jet in addition to other physical processes resulting from hydrogen gas injection. Combustion experiments were conducted in a single-cylinder SI optical research engine equipped with a DI system to detect the early kernel growth assisted by the spark, as well as flame propagation. Various equivalence ratios and fuel injection timings were analyzed to identify the effects on combustion.
Technical Paper

Ion Current in a Homogeneous Charge Compression Ignition Engine

2007-10-29
2007-01-4052
Homogeneous charge compression ignition (HCCI), has the potential to improve the fuel economy and to reduce NOx emission significantly. Spark plug in SI engine and fuel injector in diesel engine can be used directly to control the start of combustion and the combustion period. However, the combustion of HCCI engine is controlled by the chemical kinetic mainly due to the temperature histories in the cylinder. Therefore the combustion process of HCCI engine cannot be directly controlled. Ion sensors such as a spark plug or a gasket are useful to detect the combustion information in production engines. In this study, the ion current was measured in an HCCI engine with the heated charge mixture of fuel and air without EGR when the charge temperature, equivalence ratio and fuel were varied. Simultaneously in-cylinder pressure was measured and the rate of heat release was calculated. The relationship between the rate of heat release and the ion current is mainly discussed.
Technical Paper

Gas Temperature Measurement in a DME-HCCI Engine using Heterodyne Interferometry with Spark-Plug-in Fiber-Optic Sensor

2007-07-23
2007-01-1848
Non-intrusive measurement of transient unburned gas temperatures was developed with a fiber-optic heterodyne interferometry system. Using the value of the Gladstone-Dale constant for DME gas and combustion pressure we can calculate the in-cylinder temperature inside unburned and burned region. In this experimental study, it was performed to set up a fiber-optic heterodyne interferometry technique to measure the temperature before and behind the combustion region in a DME-HCCI engine. At first, measured temperature was almost the same as the temperature history assuming that the process that changes of the unburned and the burned are polytropic. In addition, we measured the temperature after combustion which of condition was burned gas with DME-HCCI combustion. The developed heterodyne interferometry used the spark-plug-in fiber-optic sensor has a good feasibility to measure the unburned and burned temperature history.
Technical Paper

Characteristics of Combustion Stability and Emission in SCCI and CAI Combustion Based on Direct-Injection Gasoline Engine

2007-07-23
2007-01-1872
Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperature and compression ratio was examined. We investigated the effects of relative air/fuel ratio, residual EGR rate and injection timing on the CAI combustion area.
Technical Paper

Visualization of Autoignited Kernel and Propagation of Pressure Wave during Knocking Combustion in a Hydrogen Spark-Ignition Engine

2009-06-15
2009-01-1773
Investigation of knocking combustion in a hydrogen spark-ignition engine is one of the major challenges for future vehicle development. The knock phenomenon in a Spark-Ignition (SI) engine is caused by autoignition of the unburned gas ahead of the flame. The explosive combustion of the end-gas creates a pressure wave that leads to damage of the cylinder wall and the piston head of the engine. We observed autoignition in the end-gas region due to compression by the propagating flame front using a high-speed colour video camera through the optically accessible cylindrical quartz window on the top of the cylinder head. Moreover, a high-speed monochrome video camera operating at a speed of 250, 000 frame/s was used to measure the pressure wave propagation. The goal of this research was to improve our ability to describe the effect of the autoignition process on the end-gas and propagating pressure wave during knocking combustion with the help of a high-speed video camera.
Technical Paper

Effect of EGR on Combustion and Exhaust Emissions in Supercharged Dual-Fuel Natural Gas Engine Ignited with Diesel Fuel

2009-06-15
2009-01-1832
The combustion and exhaust emissions characteristics of a supercharged dual-fuel natural gas engine with a single cylinder were analyzed. We focused on EGR (Exhaust Gas Recirculation) to achieve higher thermal efficiency and lower exhaust emissions. The combustion of diesel fuel (gas oil) as ignition sources was visualized using a high-speed video camera from the bottom of a quartz piston. The luminous intensity and flame decreased as the EGR rate increased. Furthermore, the ignition delay became longer due to the EGR. Characteristics of the combustion and exhaust emissions were investigated with changing EGR rates under supercharged conditions. The indicated mean effective pressure and thermal efficiency decreased with increasing EGR rate. In addition, NOx emissions decreased due to the EGR. In this study two-stage combustion was observed.
Technical Paper

Mixture Formation Process in a Spark-Ignition Engine with Ethanol Blended Gasoline

2009-06-15
2009-01-1957
In this study, fuel concentration measurements in a spark-ignition (SI) engine with ethanol blended gasoline were carried out using an optical sensor installed in the spark plug with laser infrared absorption technique. The spark plug sensor for in-situ fuel concentration measurement was applied to a port injected SI engine. The molar absorption coefficients of ethanol blended gasoline were determined for various pressures and temperatures in advance using a constant volume vessel with electric heating system. Ethanol blended gasoline with high volumetric ratios shows lower molar absorption coefficients due to lower molar absorption coefficients of ethanol. The molar absorption coefficients of ethanol blended gasoline can be estimated by considering the molar fraction of each component.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to a Port Injected Lean-Burn Engine

2004-03-08
2004-01-1353
In this study, a spark plug sensor for in-situ fuel concentration measurement was applied to a port injected lean-burn engine. Laser infrared absorption method was employed and a 3.392 μm He-Ne laser that coincides with the absorption line of hydrocarbons was used as a light source. In this engine, the secondary valve lift height of intake system was controlled to obtain appropriate swirl and tumble flow in order to achieve lean-burn with the characteristics of intake flow. For such in-cylinder stratified mixture distribution, the fuel concentration near the spark plug is very important factor that affects the combustion characteristics. Therefore, the mixture formation process near the spark plug was investigated with changing fuel injection timing. Under the intake stroke, the timing that fuel passed through near the spark plug depended largely on the fuel injection timing.
Technical Paper

Hydrogen Combustion and Exhaust Emissions Ignited with Diesel Oil in a Dual Fuel Engine

2001-09-24
2001-01-3503
Hydrogen is expected to be one of the most prominent fuels in the near future for solving greenhouse problem, protecting environment and saving petroleum. In this study, a dual fuel engine of hydrogen and diesel oil was investigated. Hydrogen was inducted in a intake port with air and diesel oil was injected into the cylinder. The injection timing was changed over extremely wide range. When the injection timing of diesel fuel into the cylinder is advanced, the diesel oil is well mixed with hydrogen-air mixture and the initial combustion becomes mild. NOx emissions decrease because of lean premixed combustion without the region of high temperature of burned gas. When hydrogen is mixed with inlet air, emissions of HC, CO and CO2 decrease without exhausting smoke while brake thermal efficiency is slightly smaller than that in ordinary diesel combustion.
Technical Paper

Combustion Diagnostics of a Spark Ignition Engine Using a Spark Plug as an Ion Probe

2002-10-21
2002-01-2838
It is important to develop the technique for measuring the cycle-to-cycle variation of combustion in order to reduce the fuel consumption of the commercial spark ignition engine. In previous study, we had proposed using the spark plug as an ion probe to measure the appearance time of maximum pressure under the lean mixture conditions of the research engine. In this paper the combustion diagnostics for the commercial engine was performed using the spark plug as an ion probe. Under idling conditions the ion current often appeared during the exhaust process. This ion current is dominated by the flame contact area and the flame velocity. In this case there is good correlation between the characteristic value of the ion current and the indicated mean effective pressure (IMEP). Finally using the spark plug as an ion probe can detect the combustion quality under conditions with large cyclic variation.
Technical Paper

Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine

2002-10-21
2002-01-2723
A dual fuel engine fueled with methane from an inlet port and ignited with diesel fuel was prepared. This study focuses on the effects of early injection and exhaust gas recirculation (EGR) on the characteristics of combustion and exhaust emissions. The injection timing was changed between TDC and 50 degrees before the TDC. In the early injection timing, smoke was never seen and hydrocarbons were smaller compared with those at the normal injection timing. However, the combustion becomes too early to obtain an appropriate torque when the equivalence ratio increases. Then, moderate EGR was very effective to force the combustion to retard with lower NOx, higher thermal efficiency and almost the same hydrocarbons and carbon monoxide. The engine operated even under the condition of stoichiometric mixture.
Technical Paper

Homogeneous Charge Compression Ignition Combustion with Dimethyl Ether - Spectrum Analysis of Chemiluminescence

2003-05-19
2003-01-1828
Homogeneous Charge Compression Ignition (HCCI) combustion with dimethyl ether has been carried out in a single cylinder engine with a transparent piston. The engine was operated at 800 rpm with a wide-open throttle. The intake-premixed mixture was preheated with an electric heater to promote auto-ignition. HCCI combustion with dimethyl ether indicates multi-stage heat releases. Investigations were conducted with visualization of combustion in the cylinder and detailed and temporal spectroscopic measurements using spectrometer. In order to understand reaction mechanism of auto-ignition and combustion mechanism in HCCI engine, spectrum analysis of chemiluminescence was carried out.
Technical Paper

Combustion Diagnostics of a Spark Ignition Engine by Using Gasket Ion Sensor

2003-05-19
2003-01-1801
A new technique for combustion diagnostics of a spark ignition engine was developed. In this method the ion sensor with the circular configuration was installed into the cylinder head gasket. This sensor is expected to be applied for production engine. The signal measured by the ion sensor was similar with that of cylinder pressure. The peak timing of ion current was consistent with the peak timing of pressure. There was a strong correlation between IMEP and the peak timing of ion current. This sensor is available to detect combustion quality in a spark ignition engine.
Technical Paper

Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

2017-09-04
2017-24-0027
A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. We have confirmed the statements of other authors that HO2+OH=H2O+O2, H2O2+M=OH+OH+M and H2O2+H=H2+HO2 reactions showed very high sensitivity during high-pressure ignition delay times and had considerable uncertainty.
Technical Paper

Ignition, Combustion and Exhaust Emission Characteristics of Micro-pilot Ignited Dual-fuel Engine Operated under PREMIER Combustion Mode

2011-08-30
2011-01-1764
The objective of this study is to investigate the performance and emissions in a pilot-ignited supercharged dual-fuel engine, fueled with different types of gaseous fuels under various equivalence ratios. It is found that if certain operating conditions are maintained, conventional dual-fuel engine combustion mode can be transformed to the combustion mode with the two-stage heat release. This mode of combustion was called the PREMIER (PREmixed Mixture Ignition in the End-gas Region) combustion. During PREMIER combustion, initially, the combustion progresses as the premixed flame propagation and then, due to the mixture autoignition in the end-gas region, ahead of the propagating flame front, the transition occurs with the rapid increase in the heat release rate.
Technical Paper

Effects of Injection Pressure, Timing and EGR on Combustion and Emissions Characteristics of Diesel PCCI Engine

2011-08-30
2011-01-1769
Effects of injection parameters on combustion and emission characteristics of diesel PCCI engine operating on optical and test engine was investigated. PCCI combustion was achieved through slightly narrow included angle injector, low compression ratio coupled with exhaust gas recirculation. Analysis based on diesel spray evolution, combustion process visualization and analysis was carried out. Spray penetration was evaluated and related to the exhaust emissions. Advancing the injection timing and EGR extended the ignition delay, decreased NOx emissions and increased HC, smoke and CO emissions. Higher injection pressure led to low emissions of NOx, smoke, HC and comparable CO. Optimum spray targeting position for minimum emission was identified. Impingement on the piston surface led to deterioration of emissions and increased fuel consumption while spray targeting the upper edge of Derby hat wall showed improvement in emission and engine performance.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

Measurement of Flame Propagation Characteristics in an SI Engine Using Micro-Local Chemiluminescence Technique

2005-04-11
2005-01-0645
A small Cassegrain optics sensor was developed to measure local chemiluminescence spectra and the local chemiluminescence intensities of OH*, CH*, and C2* in a four-stroke spark-ignition (SI) engine in order to investigate the propagation characteristics of the turbulent premixed flame. The small Cassegrain optics sensor was an M5 type that could be installed in place of a pressure transducer. The measurements could be used to estimate the flame propagation speed, burning zone thickness, and local air/fuel (A/F) ratio for each cycle. The specifications of the small Cassegrain optics sensor were the same as those used for previous engine measurements. In this paper, measurements were made of several A/F ratios using gasoline to fuel the model engine. The performances of two Cassegrain optics sensors were compared to demonstrate the advantages of the new small sensor by measuring the local chemiluminescence intensities of a turbulent premixed flame in the model engine.
Technical Paper

In-Cylinder Observations of Chemiluminescence in Turbulent Premixed Flames Using a Spark Plug Sensor with an Optical Fiber

2013-10-14
2013-01-2578
The purpose of this study was to characterize the air/fuel ratio (AFR) of turbulent premixed flames in a spark-ignition (SI) engine. We developed a spark plug sensor with an optical fiber to detect the chemiluminescence spectra, specifically the intensity of the spectral lines related to OH*, CH*, and C2* free radicals. The sensor was composed of a sapphire window and optical fiber and is applicable to automobile SI engines. Measurements of the chemiluminescence intensity from OH*, CH*, and C2* radicals were obtained in turbulent premixed flames with a propane-air mixture for different AFRs in a compression-expansion machine (CEM). The performance of the spark plug sensor was compared with a Cassegrain reflector using an intensified charge-coupled device. The results showed good agreement with measurements obtained using the Cassegrain reflector. The spark plug sensor was shown to be useful for measuring chemiluminescence of turbulent premixed flames in an SI engine.
Technical Paper

A Study of Air-Fuel Mixture Formation in Direct-Injection SI Engines

2004-06-08
2004-01-1946
An investigation was made into two approaches to air-fuel mixture formation in direct injection SI engines in which charge stratification is controlled by swirl or tumble gas motions, respectively. Particle image velocimetry (PIV), laser-induced fluorescence (LIF) and air-fuel ratio measurement by infrared absorption were used to analyze fuel transport from the fuel injector to the spark plug and the fuel vaporization process. The results obtained were then compared with measured data as to combustion stability. As a result, the reason why the effects of injection timing on combustion stability were different between the two approaches was made clear from the standpoint of the mixture formation process.
X