Refine Your Search

Topic

Search Results

Video

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2012-02-15
Zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing and boosting; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions. Presenter Fabio Bozza, Universita di Napoli
Technical Paper

Noise Prediction of a Multi-Cylinder Engine Prototype Using Multi-Body Dynamic Simulation

2011-09-11
2011-24-0216
In the paper a coupled Multi-Body and FEM-BEM methodology used to predict the noise radiated by a turbocharged 4-cylinder diesel engine prototype is described. A Multi-Body Dynamic Simulation (MBDS) of the engine has been carried out, simulating an engine speed sweep from 1500 to 4000 rpm, in order to determine the excitation force of the powertrain, and in particular to estimate the forces acting on the cylinder block. Thanks to the Multi-Body approach, the dynamics of the engine powertrain have been described taking into account both the effects of the burnt gas pressure during the combustion process and the inertia forces of the moving parts. Moreover to assess the real engine operating behaviour, both the crank and the block have been considered as flexible bodies.
Technical Paper

Validation of 1D and 3D Analyses for Performance Prediction of an Automotive Silencer

2011-09-11
2011-24-0217
One dimensional (1D) and three dimensional (3D) simulations are widely used in technical acoustics to predict the behavior of duct system elements including fluid machines. In particular, referring to internal combustion engines, the numerical approaches can be used to estimate the Transmission Loss (TL) of mufflers, air boxes, catalytic converters, etc. TL is a parameter commonly used in almost any kind of acoustical filters, in order to assess the passive effects related to their sound attenuation. In this paper, a previous 1D-3D acoustical analysis of a commercial muffler, has been improved and experimentally validated. Features related to the manufacturing process, like the coupling of adjacent surfaces and the actual shape of components, have been noticed to heavily affect the muffler behavior.
Technical Paper

Reducing Fuel Consumption, Noxious Emissions and Radiated Noise by Selection of the Optimal Control Strategy of a Diesel Engine

2011-09-11
2011-24-0019
Despite the recent efforts devoted to develop alternative technologies, it is likely that the internal combustion engine will remain the dominant propulsion system for the next 30 years and beyond. Also as a consequence of more and more stringent emissions regulations established in the main industrialized countries, strongly demanded are methods and technologies able to enhance the internal combustion engines performance in terms of both efficiency and environmental impact. Present work focuses on the development of a numerical method for the optimization of the control strategy of a diesel engine equipped with a high pressure injection system, a variable geometry turbocharger and an EGR circuit. A preliminary experimental analysis is presented to characterize the considered six-cylinder engine under various speeds, loads and EGR ratios.
Technical Paper

Pros and Cons of Using Different Numerical Techniques for Transmission Loss Evaluation of a Small Engine Muffler

2010-09-28
2010-32-0028
Automotive exhaust systems give a major contribution to the sound quality of a vehicle and must be properly designed in order to produce acceptable acoustic performances. Obviously, noise attenuation is strictly related to the used materials and to its internal geometry. This last influences the wave propagation and the gas-dynamic field. The purpose of this paper is to describe advantages and disadvantages of different numerical approaches in evaluating the acoustic performance in terms of attenuation versus frequency (Transmission Loss) of a commercial two perforated tube muffler under different conditions. At first, a one-dimensional analysis is performed through the 1D GTPower® code, solving the nonlinear flow equations which characterize the wave propagation phenomena. The muffler is characterized as a network of properly connected pipes and volumes starting from 3D CAD information. Then, two different 3D analyses are performed within the commercial STS VNOISE® code.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Journal Article

Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle

2017-09-04
2017-24-0014
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knock onset. The new features of the 1D model include an improved treatment of the heat subtracted by the water evaporation, a newly developed correlation for the laminar flame speed, explicitly considering the amount of water in the unburned mixture, and a more detailed kinetic mechanism to predict the auto-ignition characteristics of fuel/air/water mixture. The extended 1D model is validated against experimental data collected at different engine speeds and loads, including knock-limited operation, for a twin-cylinder turbocharged SI engine.
Technical Paper

Second Law Analysis of Turbocharged Engine Operation

1991-02-01
910418
In this paper the turbocharged diesel engine operation is analyzed by means of a second law based method. The instantaneous release and storage of availability inside the several components (cylinders, manifolds, compressor and turbine) are evaluated by following a theoretical-experimental methodology that has been recently proposed by the authors. Examples of availability balances are compared for different values of some parameters which influence the combustion and the exhaust process, or for several arrangements of the engine and turbomachine system. The availability analysis of the engine transient development will show the amounts of mechanical energy employed for both in-cylinder storage and turbocharger acceleration and of those available for conversion into external output. These amounts will be compared with the fuel availability and with those destroyed during the several processes (i.e. combustion, gas exchange, turbocharger operation).
Technical Paper

A Two-Stroke Engine Model Based on Advanced Simulation of Fundamental Processes

1995-09-01
952139
Research activities concerning the development and set up of a theoretical model for the analysis of spark-ignition two-stroke engines are reported. The engine system is identified by the definition of both zero-dimensional time-varying control volumes (i.e., cylinders or crankcases) and one-dimensional devices (i.e., intake or exhaust manifolds, transfer ducts, etc.). Fundamental processes such as combustion, fluid dynamics and scavenging, are modelled using up-to-date approaches. In particular, a fractal sub-model is adopted for the evaluation of flame area and burning rate; a high resolution upwind TVD scheme is utilized for the prediction of wave propagation within ducts. The overall prediction level is estimated through the comparison with experimental data measured on a small-size engine under both motored and firing conditions.
Journal Article

Numerical and Experimental Investigation of Fuel Effects on Knock Occurrence and Combustion Noise in a 2-Stroke Engine

2012-04-16
2012-01-0827
Knock occurrence is a widely recognized phenomenon to be controlled during the development and optimization of S.I. engines, since it bounds both compression ratio and spark advance, hence reducing the potential in gaining a lower fuel consumption. As a consequence, a clear understanding of the engine parameters affecting the onset of auto-ignition is mandatory for the engine setup. In view of the complexity of the phenomena, the use of combined experimental and numerical investigations is very promising. The paper reports such a combined activity, targeted at characterizing the combustion behavior of a small unit displacement two-stroke SI engine operated with either Gasoline or Natural Gas (CNG). In the paper, detailed multi-cycle 3D-CFD analyses, starting for preliminary 1D computed boundary conditions, are performed to accurately characterize the engine behavior in terms of scavenging efficiency and combustion.
Journal Article

Fuel Consumption Optimization and Noise Reduction in a Spark-Ignition Turbocharged VVA Engine

2013-04-08
2013-01-1625
Modern VVA systems offer new potentialities in improving the fuel consumption for spark-ignition engines at low and medium load, meanwhile they grant a higher volumetric efficiency and performance at high load. Recently introduced systems enhance this concept through the possibility of concurrently modifying the intake valve opening, closing and lift leading to the development of almost "throttle-less" engines. However, at very low loads, the control of the air-flow motion and the turbulence intensity inside the cylinder may require to select a proper combination of the butterfly throttling and the intake valve control, to get the highest BSFC (Brake Specific Fuel Consumption) reduction. Moreover, a low throttling, while improving the fuel consumption, may also produce an increased gas-dynamic noise at the intake mouth. In highly "downsized" engines, the intake valve control is also linked to the turbocharger operating point, which may be changed by acting on the waste-gate valve.
Journal Article

Validation of a 1D Compressor Model for Performance Prediction

2013-09-08
2013-24-0120
In the present paper, a recently developed centrifugal compressor model is briefly summarized. It provides a refined geometrical schematization of the device, especially of the impeller, starting from a reduced set of linear and angular dimensions. A geometrical module reproduces the 3D geometry of the impeller and furnishes the data employed to solve the 1D flow equations inside the rotating and stationary ducts constituting the complete device. The 1D compressor model allows to predict the performance maps (pressure ratio and efficiency) with good accuracy, once the tuning of a number of parameters is realized to characterize various flow losses and heat exchange. To overcome the limitations related to the model tuning, unknown parameters are selected with reference to 5 different devices employing an optimization procedure (modeFRONTIER™).
Journal Article

Advanced Numerical and Experimental Techniques for the Extension of a Turbine Mapping

2013-09-08
2013-24-0119
1D codes are nowadays commonly used to investigate a turbocharged ICE performance, turbo-matching and transient response. The turbocharger is usually described in terms of experimentally derived characteristic maps. The latter are commonly measured using the compressor as a brake for the turbine, under steady “hot gas” tests. This approach causes some drawbacks: each iso-speed is commonly limited to a narrow pressure ratio and mass flow rate range, while a wider operating domain is experienced on the engine; the turbine thermal conditions realized on the test rig may strongly differ from the coupled-to-engine operation; a “conventional” net turbine efficiency is really measured, since it includes the effects of the heat exchange on the compressor side, together with bearing friction and windage losses.
Technical Paper

Knock Detection in a Turbocharged S.I. Engine Based on ARMA Technique and Chemical Kinetics

2013-10-14
2013-01-2510
During the last years, a number of techniques aimed at the experimental identification of the knocking onset in Spark-Ignition (SI) Internal Combustion Engines have been proposed. Besides the traditional procedures based on the processing of in-cylinder pressure data in the frequency domain, in the present paper two innovative methods are developed and compared. The first one is based on the use of statistical analysis by applying an Auto Regressive Moving Average (ARMA) technique, coupled to a prediction algorithm. It is shown that such parametric model, applied to the instantaneous in-cylinder pressure measurements, is highly sensitive to knock occurrence and is able to identify soft or heavy knock presence in different engine operating conditions. An alternative, more expensive procedure is developed and compared to the previous one.
Journal Article

Map-Based and 1D Simulation of a Turbocharger Compressor in Surging Operation

2011-09-11
2011-24-0126
One-dimensional (1D) models are commonly employed to study the performances of turbocharged engine. Manufacturers' provided steady turbomachinery maps are usually utilized, although they operate in unsteady conditions as a consequence of pressure pulses propagating into the intake and exhaust systems. This may lead to some inaccuracies in the engine-turbocharger matching calculations, which may be solved through the introduction of proper time-delays (virtual pipe corrections). These drawbacks, however, became more relevant when engine operates under low speed and high load conditions, or during a transient maneuver, because of possibilities of compressor surging.
Journal Article

Fuel Economy Improvement and Knock Tendency Reduction of a Downsized Turbocharged Engine at Full Load Operations through a Low-Pressure EGR System

2015-04-14
2015-01-1244
It is well known that the downsizing philosophy allows the improvement of Brake Specific Fuel Consumption (BSFC) at part load operation for spark ignition engines. On the other hand, the BSFC is penalized at high/full load operation because of the knock occurrence and of further limitations on the Turbine Inlet Temperature (TIT). Knock control forces the adoption of a late combustion phasing, causing a deterioration of the thermodynamic efficiency, while TIT control requires enrichment of the Air-to-Fuel (A/F) ratio, with additional BSFC drawbacks. In this work, a promising technique, consisting of the introduction of a low-pressure cooled exhaust gas recirculation (EGR) system, is analyzed by means of a 1D numerical approach with reference to a downsized turbocharged SI engine. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon and the knock occurrence.
Journal Article

Experimental Investigation and 1D Simulation of a Turbocharger Compressor Close to Surge Operation

2015-04-14
2015-01-1720
Downsizing is widely considered one of the main path to reduce the fuel consumption of spark ignition internal combustion engines. As known, despite the reduced size, the required torque and power targets can be attained thanks to an adequate boost level provided by a turbocharger. However, some drawbacks usually arise when the engine operates at full load and low speeds. In fact, in the above conditions, the boost pressure and the engine performance is limited since the compressor experiences close-to-surge operation. This occurrence is even greater in case of extremely downsized engines with a reduced number of cylinders and a small intake circuit volume, where the compressor works under strongly unsteady flow conditions and its instantaneous operating point most likely overcomes the steady surge margin. In the paper, both experimental and numerical approaches are followed to describe the unsteady behavior of a small in-series turbocharger compressor.
Journal Article

Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling

2015-09-06
2015-24-2393
The results of the experimental analyses, described in Part 1, are here employed to build up an innovative numerical approach for the 1D modeling of combustion, cycle-by-cycle variations and knock of a high performance 12-cylinder spark-ignition engine. The whole engine is schematized in detail in a 1D framework simulation, developed in the GT-Power™ environment. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon, cycle-by-cycle variations (CCV) and knock occurrence. In particular, the knock onset is evaluated by a chemical kinetic scheme for a toluene reference fuel, able to detect the presence of auto-ignition reactions in the end-gas zone. In a first stage, the engine model is validated in terms of overall performance parameter and ensemble averaged pressure cycles, for various full and part load operating points and spark timings.
Journal Article

Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine

2016-04-05
2016-01-0545
It is widely recognized that spatial and temporal evolution of both macro- and micro- turbulent scales inside internal combustion engines affect air-fuel mixing, combustion and pollutants formation. Particularly, in spark ignition engines, tumbling macro-structure induces the generation of a proper turbulence level to sustain the development and propagation of the flame front. As known, 3D-CFD codes are able to describe the evolution of the in-cylinder flow and turbulence fields with good accuracy, although a high computational effort is required. For this reason, only a limited set of operating conditions is usually investigated. On the other hand, thanks to a lower computational burden, 1D codes can be employed to study engine performance in the whole operating domain, despite of a less detailed description of in-cylinder processes. The integration of 1D and 3D approaches appears hence a promising path to combine the advantages of both.
Journal Article

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2011-04-12
2011-01-1147
Turbocharging technique will play a fundamental role in the near future not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions both in Spark Ignition and diesel automotive applications. To achieve excellent engine performance for road application, it is necessary to overcome some typical turbocharging drawbacks i.e., low end torque level and transient response. Experimental studies, developed on dedicated test facilities, can supply a lot of information to optimize the engine-turbocharger matching, especially if tests can be extended to the typical engine operating conditions (unsteady flow). Different numerical procedures have been developed at the University of Naples to predict automotive turbocharger compressor performance both under steady and unsteady flow conditions. A classical 1D approach, based on the employment of compressor characteristic maps, was firstly followed.
X