Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Can Heavy-Duty Diesel Engines Fueled with DME Meet US 2007/2010 Emissions Standard with A Simplified Aftertreatment System?

2006-04-03
2006-01-0053
Emissions from CI engines fueled with dimethyl ether (DME) were discussed in this paper. Thanks to its high content of fuel oxygen, DME combustion is virtually soot free. This characteristic of DME combustion indicates that the particulate filter will not be needed in the aftertreatment system for engines fueled with DME. NOx emissions from a CI engine fueled with DME can meet the US 2007 regulation with a high EGR rate. Because 49% more fuel mass must be delivered in each DME injection than the corresponding diesel-fuel injection, and the DME injection pressure is lower than 500 bar under the current fuel-system technology, the DME injection duration is generally longer than that of diesel-fuel injection. This is unfavorable to further NOx reduction. A multiple-injection strategy with timing for the primary injection determined by the cylinder temperature was proposed.
Technical Paper

Comparative Study of Thermal Characteristics of Lithium-ion Batteries for Vehicle Applications

2011-04-12
2011-01-0668
Lithium ion batteries can be developed for vehicle applications from high power specification to high energy specification. Thermal response of a battery cell is the main factor to be considered for battery selection in the design of an electrified vehicle because some materials in the cells have low thermal stability and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating range. In this paper the thermal characteristics of different sizes and forms of commercially available batteries is investigated through electro-thermal analysis. The relation between cell capacity and cell internal resistance is also studied. The authors find that certain criteria can be defined for battery selection for electric vehicles, hybrid electric vehicles and plug-in hybrid electric vehicles. These criteria can be served as design guidelines for battery development for vehicle applications.
Technical Paper

A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines - Experimental Results

2011-04-12
2011-01-1337
A Rankine cycle system with ethanol as the working fluid was developed to investigate the fuel economy benefit of recovering waste heat from a 10.8-liter heavy-duty (HD) truck diesel engine. Recovering rejected heat from a primary engine with a secondary bottoming cycle is a proven concept for improving the overall efficiency of the thermodynamic process. However, the application of waste heat recovery (WHR) technology to the HD diesel engine has proven to be challenging due to cost, complexity, packaging and control during transient operation. This paper discusses the methods and technical innovations required to achieve reliable high performance operation of the WHR system. The control techniques for maintaining optimum energy recovery while protecting the system components and working fluid are described. The experimental results are presented and demonstrate that 3-5% fuel saving is achievable by utilizing this technology.
Technical Paper

Influence of Terminal Tabs/Busbar Ohmic Heat on Maximum Cell Temperature of a Li-ion Battery System for PHEV Applications

2012-04-16
2012-01-0119
The battery packs for plug-in hybrid electrical vehicle (PHEV) applications are relatively small in the charge depleting (CD) mode but fairly large in the charge sustaining (CS) mode for their duties in comparison to the battery packs for hybrid electrical vehicle (HEV) applications. Thus, the heaviest battery thermal load for a PHEV pack is encountered at the end of the CD mode. Because the cells in PHEV battery packs are generally larger than those in the HEV packs in both capacity and size, control of the maximum cell temperature and the maximum differential cell temperature for the cells in a PHEV pack with high packing efficiency is a challenge for the cooling system design. The maximum cell temperatures locate in the areas near the terminal tabs where the current densities are highest.
Technical Paper

A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines - WHR System Development

2011-04-12
2011-01-0311
Waste heat recovery (WHR) has been recognized as a promising technology to achieve the fuel economy and green house gas reduction goals for future heavy-duty (HD) truck diesel engines. A Rankine cycle system with ethanol as the working fluid was developed at AVL Powertrain Engineering, Inc. to investigate the fuel economy benefit from recovering waste heat from a 10.8L HD truck diesel engine. Thermodynamic analysis on this WHR system demonstrated that 5% fuel saving could be achievable. The fuel economy benefit can be further improved by optimizing the design of the WHR system components and through better utilization of the available engine waste heat. Although the WHR system was designed for a stand-alone system for the laboratory testing, all the heat exchangers were sized such that their heat transfer areas are equivalent to compact heat exchangers suitable for installation on a HD truck diesel engine.
Technical Paper

Improving Fuel Economy for HD Diesel Engines with WHR Rankine Cycle Driven by EGR Cooler Heat Rejection

2009-10-06
2009-01-2913
The fuel saving benefit is analyzed for a class-8 truck diesel engine equipped with a WHR system, which recovers the waste heat from the EGR. With this EGR-WHR system, the composite fuel savings over the ESC 13-mode test is up to 5%. The fuel economy benefit can be further improved if the charge air cooling is also integrated in the Rankine cycle loop. The influence of working fluid properties on the WHR efficiency is studied by operating the Rankine cycle with two different working fluids, R245fa and ethanol. The two working fluids are compared in the temperature-entropy and enthalpy-entropy diagrams for both subcritical and supercritical cycles. For R245fa, the subcritical cycle shows advantages over the supercritical cycle. For ethanol, the supercritical cycle has better performance than the subcritical cycle. The comparison indicates that ethanol can be an alternative for R245fa.
Technical Paper

Characterizing Thermal Behavior of an Air-Cooled Lithium-Ion Battery System for Hybrid Electrical Vehicle Applications Using Finite Element Analysis Approach

2013-04-08
2013-01-1520
Thermal behavior of a Lithium-ion (Li-ion) battery module under a user-defined cycle corresponding to hybrid electrical vehicle (HEV) applications is analyzed. The module is stacked with 12 high-power 8Ah pouch Li-ion battery cells connected in series electrically. The cells are cooled indirectly with air through aluminum cooling plate sandwiched between each pair of cells. The cooling plate has extended cooling surfaces exposed in the cooling air flow channel. Thermal behavior of the battery system under a user specified electrical-load cycle for the target hybrid vehicle is characterized with the equivalent continuous load profile using a 3D finite element analysis (FEA) model for battery cooling. Analysis results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures. Improvement of the cooling system design is also studied with assistance of the battery cooling analyses.
Journal Article

Electro-Thermal Modeling of a Lithium-ion Battery System

2010-10-25
2010-01-2204
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
Journal Article

Waste Heat Recovery Concept to Reduce Fuel Consumption and Heat Rejection from a Diesel Engine

2010-10-05
2010-01-1928
Fuel economy is critical for heavy-duty line haul applications. As fuel prices rise and impending fuel economy regulations are implemented, new ways to improve heavy-vehicle fuel economy will be in high demand. AVL Powertrain Engineering has undertaken a research and development project to demonstrate the feasibility of a Rankine Cycle Waste Heat Recovery (WHR) system. The goals of the project were to reduce the overall engine heat rejection, specific emissions and fuel consumption (CO₂ emissions) of heavy-duty diesel engines by converting heat that is typically wasted to the exhaust stack and through the EGR cooler to useable mechanical energy. A detailed thermodynamic analysis was conducted which laid the groundwork for working fluid selection and proper sizing of the WHR components. Based on the system specifications, a prototype WHR system was designed and built. The performance of the system was evaluated on a 10.8-liter heavy-duty on-highway diesel engine.
Journal Article

Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling

2012-04-16
2012-01-0333
Thermal behavior of a lithium-ion (Li-ion) battery module for hybrid electrical vehicle (HEV) applications is analyzed in this study. The module is stacked with 12 high-power pouch Li-ion battery cells. The cells are cooled indirectly with air through aluminum fins sandwiched between each two cells in the module, and each of the cooling fins has an extended cooling surface exposed in the cooling air flow channel. The cell temperatures are analyzed using a quasi-dimensional model under both the transient module load in a user-defined cycle for the battery system utilizations and an equivalent continuous load in the cycle. The cell thermal behavior is evaluated with the volume averaged cell temperature and the cell heat transfer is characterized with resistances for all thermal links in the heat transfer path from the cell to the cooling air. Simulations results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures.
Journal Article

Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach

2012-04-16
2012-01-0331
The performance and life of Li-ion battery packs for electric vehicle (EV), hybrid electrical vehicle (HEV), and plug-in hybrid electrical vehicle (PHEV) applications are influenced significantly by battery operation temperatures. Thermal management of a battery pack is one of the main factors to be considered in the pack design, especially for those with indirect air or indirect liquid cooling since the cooling medium is not in contact with the battery cells. In this paper, thermal behavior of Li-ion pouch cells in a battery system for PHEV applications is studied. The battery system is cooled indirectly with liquid through aluminum cooling fins in contact with each cell and a liquid cooled cold plate for each module in the battery pack. The aluminum cooling fins function as a thermal bridge between the cells and the cold plate. Cell temperature distributions are simulated using a finite element analysis approach under cell utilizations corresponding to PHEV applications.
Journal Article

A Thermodynamic Model for a Single Cylinder Engine with Its Intake/Exhaust Systems Simulating a Turbo-Charged V8 Diesel Engine

2011-04-12
2011-01-1149
In this paper, a thermodynamic model is discussed for a single cylinder diesel engine with its intake and exhaust systems simulating a turbo-charged V8 diesel engine. Following criteria are used in determination of the gas exchange systems of the single cylinder engine (SCE): 1) the level of pressure fluctuations in the intake and exhaust systems should be within the lower and upper bounds of those simulated by the thermodynamic model for the V8 engine and patterns of the pressure waves should be similar; 2) the intake and exhaust flows should be reasonably close to those of the V8 engine; 3) the cylinder pressures during the combustion and gas exchange should be reasonably close to those of the V8 engine under the same conditions for the valve timing, fuel injection, rate of heat release and in-cylinder heat transfer. The thermodynamic model for the SCE is developed using the 1D engine thermodynamic simulation tool AVL BOOST.
Technical Paper

A Comparative Study on Influence of EIVC and LIVC on Fuel Economy of a TGDI Engine Part II: Influences of Intake Event and Intake Valve Closing Timing on the Cylinder Charge Motion

2017-10-08
2017-01-2246
The present paper is Part II of an investigation on the influences of the late intake valve closing (LIVC) and the early intake valve closing (EIVC) on the engine fuel consumptions at different loads and speeds. The investigation was conducted with two 1.5L turbo-charged gasoline direct injection (TGDI) engines, one with a low-lift intake cam and the other with a high-lift intake cam. The focus of this paper is the cylinder charge motion. Computational fluid dynamic (CFD) analyses were conducted on the characteristics of the cylinder charge motion for the load points 6 bar-bmep / 2000 rpm, 12 bar-bmep / 3000 rpm, and 19 bar-bmep / 1500 rpm, representing naturally aspirated and boost-mode operations without and with scavenging during the valve overlap.
Technical Paper

A Comparative Study on Influence of EIVC and LIVC on Fuel Economy of A TGDI Engine Part I: Friction Torques of Intake Cams with Different Profiles and Lifts

2017-10-08
2017-01-2245
In order to better understand how the Atkinson cycle and the Miller cycle influence the fuel consumption at different engine speeds and loads, an investigation was conducted to compare influences of early intake valve closing (EIVC) and late intake valve closing (LIVC) on the fuel consumption of a 1.5L turbo-charged gasoline direct injection (TGDI) engine. The engine was tested with three different intake cams, covering three intake durations: 251 degCA (the base engine), 196 degCA (the Miller engine), and 274 degCA (the Atkinson engine). Compression ratios are 9.5:1 for the base engine and 11.4:1 for the Atkinson and Miller engines, achieved with piston modifications. Results of this investigation will be reported in three papers focusing respectively on characteristics of the engine friction, in-cylinder charge motions for different intake events, and combustion and fuel economy without and with EGR for the naturally aspirated mode and boost mode.
Technical Paper

A Comparative Study on Influence of EIVC and LIVC on Fuel Economy of A TGDI Engine Part III: Experiments on Engine Fuel Consumption, Combustion, and EGR Tolerance

2017-10-08
2017-01-2232
The present paper is Part III of an investigation on the influences of the late intake valve closing (LIVC) and the early intake valve closing (EIVC) on the engine fuel consumptions at different loads and speeds. The investigation was conducted with two 1.5L turbo-charged gasoline direct injection (TGDI) engines, one with a low-lift intake cam (the Miller engine) and the other with a high-lift intake cam (the Atkinson engine). This paper focuses on the influence of the intake-valve-closing timing on the fuel economy with and without exhaust gas recirculation (EGR). It was found that the Miller engine had a lower friction than the Atkinson engine; however, the impact of the difference in engine frictions on the fuel economy was mainly for low-speed operations. Across the engine speed range, the Miller engine had longer combustion durations than the Atkinson engine as a result of the impact of EIVC on the cylinder charge motion.
Journal Article

Characterizing Thermal Runaway of Lithium-ion Cells in a Battery System Using Finite Element Analysis Approach

2013-04-08
2013-01-1534
In this study, thermal runaway of a 3-cell Li-ion battery module is analyzed using a 3D finite-element-analysis (FEA) method. The module is stacked with three 70Ah lithium-nickel-manganese-cobalt (NMC) pouch cells and indirectly cooled with a liquid-cooled cold plate. Thermal runaway of the module is assumed to be triggered by the instantaneous increase of the middle cell temperature due to an abusive condition. The self-heating rate for the runaway cell is modeled on the basis of Accelerating Rate Calorimetry (ARC) test data. Thermal runaway of the battery module is simulated with and without cooling from the cold plate; with the latter representing a failed cooling system. Simulation results reveal that a minimum of 165°C for the middle cell is needed to trigger thermal runaway of the 3-cell module for cases with and without cold plate cooling.
Technical Paper

Mitigating Intensities of Super Knocks Encountered in Highly Boosted Gasoline Direct Injection Engines

2015-03-30
2015-01-0084
Turbocharged gasoline direct injection (TGDI) engines can achieve a very high level of brake mean effective pressure and thus the engines can be downsized. The biggest challenge in developing highly-boosted TGDI engines may be how to mitigate the pre-ignition (PI) triggered severe engine knocks at high loads and low engine speeds. Since magnitudes of cylinder pressure fluctuations during aforementioned engine knocks reach those for peak firing pressures in normal combustion, they are characterized as super knocks. It is widely believed that the root cause for super knocks is the oil particles entering the engine cylinder, which pre-ignite the cylinder mixture in late of the compression stroke. It is neither possible nor practical to completely eliminate the oil particles from the engine cylinder; a reasonable approach to mitigate super knocks is to weaken the conditions favoring super knocks.
Technical Paper

Reducing Temperature Gradients in High-Power, Large-Capacity Lithium-Ion Cells through Ultra-High Thermal Conductivity Heat Spreaders Embedded in Cooling Plates for Battery Systems with Indirect Liquid Cooling

2013-04-08
2013-01-0234
For lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. The cooling plates extract the cell heat and dissipate it to a cooling medium (air or liquid). During the pack utilizations with high-pulse currents, large temperature gradients along the cell surfaces can be encountered as a result of non-uniform distributions of the ohmic heat generated in the cells. The non-uniform cell temperature distributions can be significant for large-size cells. Maximum cell temperatures typically occur near the cell terminal tabs as a result of the ohmic heat of the terminal tabs and connecting busbars and the high local current densities. In this study, a new cooling plate is proposed for improving the uniformity in temperature distributions for the cells with large capacities.
Technical Paper

A Thermal Energy Operated Heating/Cooling System for Buses

2010-04-12
2010-01-0804
The passenger cabin heating and cooling has a considerable impact on the fuel economy for buses, especially during the waiting period. This problem becomes more significant for the hybrid buses for which the impact of the auxiliary load on the fuel economy is almost twice that on the conventional buses. A second-law analysis conducted in this study indicates that a heat-driven AC system has higher energy utilization efficiency than the conventional AC system. On the basis of this analysis, a concept waste-heat-driven absorptive aqua-ammonia heat pump system is proposed and analyzed. Results of the analysis show that the heat-driven system can reduce the engine auxiliary load significantly because it eliminates the conventional AC compressor. In the AC mode, its energy utilization efficiency can be up to 50%. In the heating mode, the effective efficiency for heating can be up to 100%.
X