Refine Your Search

Topic

Search Results

Technical Paper

Residual Gas Trapping for Natural Gas HCCI

2004-06-08
2004-01-1973
With the high auto ignition temperature of natural gas, various approaches such as high compression ratios and/or intake charge heating are required for auto ignition. Another approach utilizes the trapping of internal residual gas (as used before in gasoline controlled auto ignition engines), to lower the thermal requirements for the auto ignition process in natural gas. In the present work, the achievable engine load range is controlled by the degree of internal trapping of exhaust gas supplemented by intake charge heating. Special valve strategies were used to control the internal retention of exhaust gas. Significant differences in the degree of valve overlap were necessary when compared to gasoline operation at the same speeds and loads, resulting in lower amounts of residual gas observed. The dilution effect of residual gas trapping is hence reduced, resulting in higher NOx emissions for the stoichiometric air/fuel ratio operation as compared to gasoline.
Technical Paper

Effect of Hydrogen Addition on Natural Gas HCCI Combustion

2004-06-08
2004-01-1972
Natural gas has a high auto-ignition temperature, requiring high compression ratios and/or intake charge heating to achieve HCCI (homogeneous charge compression ignition) engine operation. Previous work by the authors has shown that hydrogen addition improves combustion stability in various difficult combustion conditions. It is shown here that hydrogen, together with residual gas trapping, helps also in lowering the intake temperature required for HCCI. It has been argued in literature that the addition of hydrogen advances the start of combustion in the cylinder. This would translate into the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke. The experimental results of this work show that, with hydrogen replacing part of the fuel, a decrease in intake air temperature requirement is observed for a range of engine loads, with larger reductions in temperature noted at lower loads.
Technical Paper

An Experimental Study of Dieseline Combustion in a Direct Injection Engine

2009-04-20
2009-01-1101
The differences between modern diesel and gasoline engine configurations are now becoming smaller and smaller, and in fact will be even smaller in the near future. They will all use moderately high compression ratios and complex direct injection strategies. The HCCI combustion mode is likely to lead to the merging of gasoline and diesel engine technologies to handle the challenges they are facing, offering a number of opportunities for the development of the fuels, engine control and after-treatment. The authors' recent experimental research into the HCCI combustion quality of gasoline and diesel blend fuels has referred to the new combustion technology as ‘Dieseline’.
Technical Paper

An Experimental Study of Combustion Initiation and development in an Optical HCCI Engine

2005-05-11
2005-01-2129
The major characteristics of the combustion in Homogeneous Charge Compression Ignition (HCCI) engines, irrespective of the technological strategy used to enable the ‘controlled auto-ignition’, are that the mixture of fuel and air is preferably premixed and largely homogeneous. Ignition tends to take place simultaneously at multiple points and there is no bulk flame propagation as in conventional spark-ignition (SI) engines. This paper presents an experimental study of flame development in an optical engine operating in HCCI combustion mode. High resolution and high-speed charge coupled device (CCD) cameras were used to take images of the flame during the combustion process. Fuels include gasoline, natural gas (NG) and hydrogen addition to NG all at stoichiometric conditions, permitting the investigation of combustion development for each fuel. The flame imaging data was supplemented by simultaneously recorded in-cylinder pressure data.
Technical Paper

Study on an Electronically Controlled Common-Rail Injection System for Liquefied Alternative Fuels

2005-05-11
2005-01-2085
Liquefied alternative fuels offer great potential benefits in reducing exhaust emissions and improving fuel economy of automotive engines. In order to achieve the best performance of the engine running with such fuels, it is critical to have an appropriate fuel system. In the present work, a new electronically controlled common-rail injection system has been specially designed and tested for the direct injection of liquefied alternative fuels, since a conventional pump-line-injector injection system in the conventional diesel engine was not suitable for the purpose. Experimental work has been carried out to examine and improve matching of the fuel injection system on a new fuel injection pump test bench. The preliminary engine bench test has demonstrated that this arrangement meets the requirement for the operating characteristics of a fuel injection system in a direct injection diesel engine operating with dimethyl ether (DME).
Technical Paper

Phenomenology of EGR in a Light Duty Diesel Engine Fuelled with Hydrogenated Vegetable Oil (HVO), Used Vegetable Oil Methyl Ester (UVOME) and Their Blends

2013-04-08
2013-01-1688
HVO contains paraffin only and UVOME is methyl ester with long chain alkyl while mineral diesel is complex compound and contains lots of aromatic and Naphthenic. This paper compares the effects of EGR on the two different types of biodiesels blends compared to diesel. The combustion performance and emissions of biodiesel blends of UVOME and HVO were investigated in a turbocharged direct injection V6 diesel engine with EGR swept from 0% to the calibration setting for diesel. The EGR sweep tests with increment of 5% were conducted at the engine speed of 1500 RPM for the load of between 72 Nm to 143 Nm, using sulfur-free diesel blended with UVOME and HVO at 30% and 60% by volume respectively. As the EGR rate was increased, the brake specific fuel consumption (BSFC) for each fuel was reduced at lower load but increased at higher load. The BSFC of mineral diesel was lower than UVOME blends and similar to the HVO blends.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Journal Article

Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer

2010-05-05
2010-01-1505
2,5-dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. In this paper, the spray characteristics of DMF and its blends with gasoline were studied from a high pressure direct injection gasoline injector using the shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques, This includes the spray penetration, droplet velocity and size distribution of the various mixtures. In parallel commercial gasoline and ethanol were measured in order to compare the characteristics of DMF. A total of 52 points were measured along the spray so that the experimental results could be used for subsequent numerical modeling. In summary, the experimental results showed that DMF and its blends have similar spray properties to gasoline, compared to ethanol. The droplet size of DMF is generally smaller than ethanol and decreases faster with the increase of injection pressure.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Technical Paper

Numerical Investigation of GDI Injector Nozzle Geometry on Spray Characteristics

2015-09-01
2015-01-1906
The large eddy simulation (LES) with Volume of Fluid (VOF) interface tracking method in Ansys-FLUENT has been used to study the effects of nozzle hole geometrical parameters on gasoline direct injection (GDI) fuel injectors, namely the effect of inner hole length/diameter (L/D) ratio and counter-bore diameters on near field spray characteristics. Using iso-octane as a model fuel at the fuel injection pressure of 200 bar, the results showed that the L/D ratio variation of the inner hole has a more significant influence on the spray characteristics than the counter-bore diameter variation. Reducing the L/D ratio effectively increases the mass flow rate, velocity, spray angle and reduces the droplet size and breakup length. The increased spray angle results in wall impingements inside the counter-bore cavity, particularly for L/D=1 which can potentially lead to increased deposit accumulation inside fuel injectors.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

The Comparative Study of Gasoline and n-butanol on Spray Characteristics

2014-10-13
2014-01-2754
n-butanol has been recognized as a promising alternative fuel for gasoline and may potentially overcome the drawbacks of methanol and ethanol, e.g. higher energy density. In this paper, the spray characteristics of gasoline and n-butanol have been investigated using a high pressure direct injection injector. High speed imaging and Phase Doppler Particle Analyzer (PDPA) techniques were used to study the spray penetration and the droplet atomization process. The tests were carried out in a high pressure constant volume vessel over a range of injection pressure from 60 to 150 bar and ambient pressure from 1 to 5 bar. The results show that gasoline has a longer penetration length than that of n-butanol in most test conditions due to the relatively small density and viscosity of gasoline; n-butanol has larger SMD due to its higher viscosity. The increase in ambient pressure leads to the reduction in SMD by 42% for gasoline and by 37% for n-butanol.
Technical Paper

Investigation on the Performance of Diesel Oxidation Catalyst during Cold Start at L ow Temperature Conditions

2014-10-13
2014-01-2712
Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC). The results show that conversion efficiency of NOx was higher during acceleration period at −7°C start than the case of 20°C start.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Journal Article

Dual-Injection as a Knock Mitigation Strategy Using Pure Ethanol and Methanol

2012-04-16
2012-01-1152
For spark ignition (SI) engines, the optimum spark timing is crucial for maximum efficiency. However, as the spark timing is advanced, so the propensity to knock increases, thus compromising efficiency. One method to suppress knock is to use high octane fuel additives. However, the blend ratio of these additives cannot be varied on demand. Therefore, with the advent of aggressive downsizing, new knock mitigation techniques are required. Fortuitously, there are two well-known lower alcohols which exhibit attractive knock mitigation properties: ethanol and methanol. Both not only have high octane ratings, but also result in greater charge-cooling than with gasoline. In the current work, the authors have exploited these attractive properties with the dual-injection, or the dual-fuel concept (gasoline in PFI and fuel additive in DI) using pure ethanol and methanol.
Journal Article

Effects of Combustion Phasing, Injection Timing, Relative Air-Fuel Ratio and Variable Valve Timing on SI Engine Performance and Emissions using 2,5-Dimethylfuran

2012-04-16
2012-01-1285
Ethanol has long been regarded as the optimal gasoline-alternative biofuel for spark-ignition (SI) engines. It is used widely in Latin and North America and is increasingly accepted as an attractive option across Europe. Nevertheless, its low energy density requires a high rate of manufacture; in areas which are deficient of arable land, such rates might prove problematic. Therefore, fuels with higher calorific values, such as butanol or 2,5-dimethylfuran (DMF) deserve consideration; a similar yield to ethanol, in theory, would require much less land. This report addresses the suitability of DMF, to meet the needs as a biofuel substitute for gasoline in SI engines, using ethanol as the biofuel benchmark. Specific attention is given to the sensitivity of DMF to various engine control parameters: combustion phasing (ignition timing), injection timing, relative air-fuel ratio and valve timing (intake and exhaust).
Technical Paper

GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR)

2013-04-08
2013-01-0537
Exhaust Gas Fuel Reforming has potential to be used for on-board generation of hydrogen rich gas, reformate, and to act as an energy recovery system allowing the capture of waste exhaust heat. High exhaust gas temperature drives endothermic reforming reactions that convert hydrocarbon fuel into gaseous fuel when combined with exhaust gas over a catalyst - the result is an increase in overall fuel energy that is proportional to waste energy capture. The paper demonstrates how the combustion of reformate in a direct injection gasoline (GDI) engine via Reformed Exhaust Gas Recirculation (REGR) can be beneficial to engine performance and emissions. Bottled reformate was inducted into a single cylinder GDI engine at a range of engine loads to compare REGR to conventional EGR. The reformate composition was selected to approximate reformate produced by exhaust gas fuel reforming at typical gasoline engine exhaust temperatures.
Technical Paper

In-Cylinder Optical Study on Combustion of DMF and DMF Fuel Blends

2012-04-16
2012-01-1235
The bio-fuel, 2,5 - dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. However, little is known about the flame behavior in an optical engine. In this paper, high speed imaging (with intensifier) was used during the combustion of DMF and its blends with gasoline and ethanol (D50, D85, E50D50 and E85D15) in an SI optical engine. The flame images from the combustion of each fuel were analyzed at two engine loads: 3bar and 4bar IMEP. For DMF, D50 and E50D50, two modes were compared: DI and PFI. The average flame shapes (in 2D) and the average flame speeds were calculated and combined with mass fraction burned (MFB) data. The results show that when using DMF, the rate of flame growth development and flame speed is higher than when using gasoline. The differences in flame speed between DMF and gasoline is about 10% to 14% at low IMEP.
Technical Paper

A Real-Time Control Oriented HCCI Combustion Model in 4-Stroke HCCI/SI GDI Engine and Model-Based Fast Calibration Development

2012-04-16
2012-01-1123
For Homogeneous Charge Compression Ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions. This includes the change in in-cylinder temperature, the composition of chemical components and their concentrations. This sensitivity presents a major challenge for the accurate control of reliable and efficient HCCI combustion. This paper outlines our recent work: 1. a real-time control oriented gasoline-fueled HCCI combustion model and its implementation in Simulink with fixed step for the conversion into dSPACE Hardware-in-the-Loop (HIL) simulation purpose. 2. The development of model-based fast calibration for the best fuel efficiency and hydrocarbon emissions via evolutionary algorithm (EA). The model reported in this paper is able to run in real-time cycle-to-cycle under engine speeds below 4000rpm and with fixed simulation steps.
X