Refine Your Search

Search Results

Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Journal Article

Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine

2015-04-14
2015-01-0808
This study investigated neat n-butanol combustion, emissions and thermal efficiency characteristics in a compression ignition (CI) engine by using two fuelling techniques - port fuel injection (PFI) and direct injection (DI). Diesel fuel was used in this research for reference. The engine tests were conducted on a single-cylinder four-stroke DI diesel engine with a compression ratio of 18.2 : 1. An n-Butanol PFI system was installed to study the combustion characteristics of Homogeneous Charge Compression Ignition (HCCI). A common-rail fuel injection system was used to conduct the DI tests with n-butanol and diesel. 90 MPa injection pressure was used for the DI tests. The engine was run at 1500 rpm. The intake boost pressure, engine load, exhaust gas recirculation (EGR) ratio, and DI timing were independently controlled to investigate the engine performance.
Journal Article

Active Injection Control for Enabling Clean Combustion in Ethanol-Diesel Dual-Fuel Mode

2015-04-14
2015-01-0858
In this work, an active injection control strategy is developed for enabling clean and efficient combustion on an ethanol-diesel dual-fuel engine. The essence of this active injection control is the minimization of the diffusion burning and resultant emissions associated with the diesel injection while maintaining controllability over the ignition and combustion processes. A stand-alone injection bench is employed to characterize the rate of injection for the diesel injection events, and a regression model is established to describe the injection timings and injector delays. A new combustion control parameter is proposed to characterize the extent of diffusion burning on a cycle-to-cycle basis by comparing the modelled rate of diesel injection with the rate of heat release in real time. The test results show that the proposed parameter, compared with the traditional ignition delay, better correlates to the enabling of low NOx and low smoke combustion.
Technical Paper

Chemical Reactivity Control of DME/Ethanol Dual Fuel Combustion

2021-09-21
2021-01-1176
The use of renewable fuels in place of conventional hydrocarbon fuels can minimize the carbon footprint of internal combustion engines. DME has been treated as a suitable surrogate to diesel fuel because of its high reactivity and soot-less combustion characteristics. The lower energy density of DME fuel demands a higher fuel supply rate to match the engine loads compared to diesel, which was achieved through prolonged injection duration and larger nozzle holes. When used as a pilot fuel to control the combustion behavior in a dual-fuel application, the fuel energy delivery rate becomes less critical allowing the use of a standard diesel common-rail injector for DME direct injection. In this work, the combustion of DME-Ethanol dual-fuel reactivity-controlled compression ignition was experimentally investigated.
Journal Article

A Zero-Dimensional Intake Dilution Tracking Algorithm for Real-Time Feedback on Exhaust Gas Recirculation

2015-04-14
2015-01-1714
This study describes a zero-dimensional algorithm for tracking the intake dilution in real-time. The inputs to the model are the oxygen concentration from the exhaust oxygen sensor, the manifold air pressure and temperature (MAP/MAT), the mass air flow (MAF) and the estimated fuel injected per cycle from the engine control module. The intake manifold, the exhaust manifold and EGR system are discretized into 3 volumes and the detailed concentrations of the gas species comprising the exhaust, EGR and intake streams are tracked at each time step (on a cycle-by-cycle basis). The model does not need the EGR ratio to be known in advance and is also applicable to oxygenated fuels such as ethanol. The model response is tuned to a multi-cylinder engine and the model output is empirically validated against a wide range of engine operations including load and EGR transients.
Journal Article

Investigation into Mixed and Hydrodynamic Frictions of PEO Coatings and Cast Iron

2016-04-05
2016-01-0491
A linerless aluminum (Al) engine block has potential to reduce the weight of an automotive engine and improve the fuel economy. However, the Al cylinder surface of an aluminum engine block is not usually strong enough to withstand the sliding wear against piston rings. A few surface processing technologies are used to protect the surface of cylinders. Among them, a thermal spraying coating, such as plasma transferred wire arc (PTWA) is already popular. Plasma electrolytic oxidation (PEO) coating is also proposed for increasing the wear resistance of aluminum-silicon (Al-Si) alloys and reducing the friction between the cylinder and piston. In this work, two different PEO coatings with a thickness of around 23 μm were prepared on an Al-Si alloy A356, and a high speed pin-on-disc tribometer was used to study the tribological behavior of the coatings at oil lubricant conditions. A cast iron sample was also used to do similar tribological tests for comparison.
Journal Article

Experimental Investigation of Diesel-Ethanol Premixed Pilot-Assisted Combustion (PPAC) in a High Compression Ratio Engine

2016-04-05
2016-01-0781
In this work, empirical investigations of the diesel-ethanol Premixed Pilot-Assisted Combustion (PPAC) are carried out on a high compression ratio (18.2:1) single-cylinder diesel engine. The tests focus on determining the minimum ethanol fraction for ultra-low NOx & soot emissions, effect of single-pilot vs. twin-pilot strategies on emissions and ignition controllability, reducing the EGR requirements, enabling clean combustion across the load range and achieving high efficiency full-load operation. The results show that both low NOx and almost zero soot emissions can be achieved but at the expense of higher unburned hydrocarbons. Compared to a single-pilot injection, a twin-pilot strategy reduces the soot emissions significantly and also lowers the NOx emissions, thereby reducing the requirements for EGR. The near-TDC pilot provides excellent control over the combustion phasing, further reducing the need of a higher EGR quantity for phasing control.
Journal Article

An Improvement on Low Temperature Combustion in Neat Biodiesel Engine Cycles

2008-06-23
2008-01-1670
Extensive empirical work indicates that the exhaust emission and fuel efficiency of modern common-rail diesel engines characterise strong resilience to biodiesel fuels when the engines are operating in conventional high temperature combustion cycles. However, as the engine cycles approach the low temperature combustion (LTC) mode, which could be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion, the engine performance start to differ between the use of conventional and biodiesel fuels. Therefore, a set of fuel injection strategies were compared empirically under independently controlled EGR, intake boost, and exhaust backpressure in order to improve the neat biodiesel engine cycles.
Technical Paper

Combustion and Emission Characteristics of SI and HCCI Combustion Fueled with DME and OME

2020-04-14
2020-01-1355
DME has been considered an alternative fuel to diesel fuel with promising benefits because of its high reactivity and volatility. Research shows that an engine fueled with DME will produce zero smoke emissions. However, the storage and the handling of the fuel are underlying difficulties owing to its high vapour pressure (530 kPa @ 20 °C). In lieu, OME1 fuel, a derivate of DME, offers advantages exhibited with DME fuel, all the while being a liquid fuel for engine application. In this work, engine tests are performed to realize the combustion behaviour of DME and OME1 fuel on a single-cylinder research engine with a compression ratio of 9.2:1. The dilution ratio of the mixture is progressively increased in two manners, allowing more air in the cylinder and applying exhaust gas recirculation (EGR). The high reactivity of DME suits the capability to be used in compression ignition combustion whereas OME1 must be supplied with a supplemental spark to initiate the combustion.
Technical Paper

Neat Biodiesel Fuel Engine Tests and Preliminary Modelling

2007-04-16
2007-01-0616
Engine performance and emission comparisons were made between the use of 100% soy, Canola and yellow grease derived biodiesel fuels and an ultra-low sulphur diesel fuel in the oxygen deficient regions, i.e. full or high load engine operations. Exhaust gas recirculation (EGR) was extensively applied to initiate low temperature combustion. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. The intake temperature, pressure, and EGR levels were modulated to improve the engine fuel efficiency and exhaust emissions. Furthermore, a preliminary ignition delay correlation under the influence of EGR was developed. Preliminary low temperature combustion modelling of the biodiesel and diesel fuels was also conducted. The research intends to achieve simultaneous reductions of nitrogen oxides and soot emissions in modern production diesel engines when biodiesel is applied.
Technical Paper

Low Temperature Combustion of Neat Biodiesel Fuel on a Common-rail Diesel Engine

2008-04-14
2008-01-1396
The fatty acid alkyl esters derived from plants, rendered fats/oils and waste restaurant greases, commonly known as biodiesel, are renewable alternative fuels that may fulfill the demand gap caused by the depleting fossil diesel fuels. The combustion and emission characteristics of neat biodiesel fuels were investigated on a single cylinder of a 4-cylinder Ford common-rail direct injection diesel engine, which cylinder has been configured to have independent exhaust gas recirculation (EGR), boost and back pressures and exhaust gas sampling. The fatty acid methyl esters derived from Canola oil, soybean oil, tallow and yellow grease were first blended. Biodiesel engine tests were then conducted under the independent control of the fuel injection, EGR, boost and back pressure to achieve the low temperature combustion mode. Multi-pulse early-injections were employed to modulate the homogeneity history of the cylinder charge.
Technical Paper

Fuel Burn Rate Control to Improve Load Capability of Neat n-Butanol Combustion in a Modern Diesel Engine

2016-10-17
2016-01-2301
This research work investigates the control strategies of fuel burn rate of neat n-butanol combustion to improve the engine load capability. Engine tests of homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) with neat n-butanol show promising NOx and smoke emissions; however, the rapid burn rate of n-butanol results in excessive pressure rise rates and limits the engine load capability. A multi-event combustion strategy is developed to modulate the fuel burn rate of the combustion cycle and thus to reduce the otherwise high pressure rise rates at higher engine load levels. In the multi-event combustion strategy, the first combustion event is produced near TDC by the compression ignition of the port injected butanol that resembles the HCCI combustion; the second combustion event occurs near 7~12 degrees after TDC, which is produced by butanol direct injection (DI) after the first HCCI-like combustion event.
Technical Paper

Heat Release Analysis of Clean Combustion with Ethanol Ignited by Diesel in a High Compression Ratio Engine

2016-04-05
2016-01-0766
The control of nitrogen oxide and smoke emissions in diesel engines has been one of the key researches in both the academia and industry. Nitrogen oxides can be effectively suppressed by the use of exhaust gas recirculation (EGR). However, the introduction of inert exhaust gas into the engine intake is often associated with high smoke emissions. To overcome these issues there have been a number of proposed strategies, one of the more promising being the use of low temperature combustion enabled with heavy EGR. This has the potential to achieve simultaneously low emissions of nitrogen oxide and smoke. However, a quantitative way to identify the transition zone between high temperature combustion and low temperature combustion has still not been fully explored. The combustion becomes even more complicated when ethanol fuel is used as a partial substitution for diesel fuel.
Technical Paper

Mode Switching to Improve Low Load Efficiency of an Ethanol-Diesel Dual-Fuel Engine

2017-03-28
2017-01-0771
The dual-fuel application using ethanol and diesel fuels can substantially improve the classical trade-off between oxides of nitrogen (NOx) and smoke, especially at moderate-to-high load conditions. However, at low engine load levels, the use of a low reactivity fuel in the dual-fuel application usually leads to increased incomplete combustion products that in turn result in a significant reduction of the engine thermal efficiency. In this work, engine tests are conducted on a high compression ratio, single cylinder dual-fuel engine that incorporates the diesel direct-injection and ethanol port-injection. Engine load levels are identified, at which, diesel combustion offers better efficiency than the dual-fuel combustion while attaining low NOx and smoke emissions. Thereafter, a cycle-to-cycle based closed-loop controller is implemented for the combustion phasing and engine load control in both the diesel and dual-fuel combustion regimes.
Technical Paper

Renewable Ethanol Use for Enabling High Load Clean Combustion in a Diesel Engine

2013-04-08
2013-01-0904
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
Technical Paper

An Investigation of OME3-Diesel Fuel Blend on a Multi-Cylinder Compression Ignition Engine

2022-03-29
2022-01-0439
Oxygenated, low energy-density fuels have the potential to decouple the NOx-soot emissions trade-off in compression-ignition engines. Additionally, synthetic fuels can provide a pathway to reach carbon-neutral utilization of hydrocarbon-based fuels in IC engines. Oxymethylene Dimethyl Ether (OME) is one such synthetic, low energy-density fuel, derived from sustainable sources that in combination with conventional fossil fuels with higher energy content, has the potential to reduce CO2 emissions below the US and EU VI legislative limits, while maintaining ultra-low soot emissions. The objective of this work is to investigate and compare the performance, emissions and efficiency of a modern multi-cylinder diesel engine under conventional high temperature combustion (HTC) with two different fuels; 1) OME310 - a blend of 10% OME3 by volume, with conventional Ultra-Low Sulphur Diesel (ULSD), and 2) D100 - conventional ULSD in North America.
Technical Paper

Preliminary Testing of n-Butanol HCCI on High Compression Ratio Diesel Engines

2019-04-02
2019-01-0577
The control of combustion phasing in homogeneous charge compression ignition (HCCI) combustion is investigated with neat n-butanol in this work. HCCI is a commonly researched combustion mode, owing to its improved thermal efficiency over conventional gasoline combustion, as well as its lower nitrogen oxide (NOx) and particulate matter emissions compared to those of diesel combustion. Despite these advantages, HCCI lacks successful widespread implementation with conventional fuels, primarily due to the lack of effective combustion phasing control. In this preliminary study, chemical kinetic simulations are conducted to study the auto-ignition characteristics of n-butanol under varied background pressures, temperatures, and dilution levels using established mechanisms in CHEMKIN software. Increasing the pressure or temperature lead to a shorter ignition delay, whereas increasing the dilution by the application of exhaust gas recirculation (EGR) leads to a longer ignition delay.
Technical Paper

Energy Efficiency Comparison between Butanol and Ethanol Combustion with Diesel Ignition

2015-04-14
2015-01-0859
The use of low temperature combustion (LTC) in diesel engines tends to suppress the NOx and dry soot emissions from diesel engines. However, due to the limitations of conventional diesel fuel properties, such as the high reactivity and low volatility, implementation of LTC is highly dependent on the application of exhaust gas recirculation (EGR). While the replacement of some of the fresh air intake with the burnt exhaust gas using EGR prevents premature combustion, it also results in a reduction in thermal efficiency. In this work, the use of two different alcohol fuels, ethanol and butanol, in a high compression ratio diesel engine has been investigated to examine their potential as substitutes for conventional diesel fuel when operating under low temperature combustion mode. The effect of diesel injection timing, alcohol fuel ratios, and EGR on engine emissions and efficiency were studied at indicated mean effective pressures in the range 0.8 to 1.2 MPa.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
X