Refine Your Search

Topic

Search Results

Journal Article

Knock in an Ethanol Fueled Spark Ignition Engine: Detection Methods with Cycle-Statistical Analysis and Predictions Using Different Auto-Ignition Models

2014-04-01
2014-01-1215
Knock is studied in a single cylinder direct injection spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed ethanol-air mixtures. At different speeds and intake temperatures spark angle sweeps have been performed at non-knocking conditions and varying knock intensities. Heat release rates and two zone temperatures are computed for both the mean and single cycle data. The in-cylinder pressure traces are analyzed during knocking combustion and have led to a definition of knocking conditions both for every single cycle as well as the mean engine cycle of a single operating point. The timing for the onset of knock as a function of degree crank angle and the mass fraction burned is determined using the “knocking” heat release and the pressure oscillations typical for knocking combustion.
Journal Article

Determination of Supersonic Inlet Boundaries for Gaseous Engines Based on Detailed RANS and LES Simulations

2013-09-08
2013-24-0004
The combustion of gaseous fuels like methane in internal combustion engines is an interesting alternative to the conventional gasoline and diesel fuels. Reasons are the availability of the resource and the significant advantage in terms of CO2 emissions due to the beneficial C/H ratio. One difficulty of gaseous fuels is the preparation of the gas/air mixtures for all operation points, since the volumetric energy density of the fuel is lower compared to conventional liquid fuels. Low-pressure port-injected systems suffer from substantially reduced volumetric efficiencies. Direct injection systems avoid such losses; in order to deliver enough fuel into the cylinder, high pressures are however needed for the gas injection which forces the fuel to enter the cylinder at supersonic speed followed by a Mach disk. The detailed modeling of these physical effects is very challenging, since the fluid velocities and pressure and velocity gradients at the Mach disc are very high.
Journal Article

Formulation of a Knock Model for Ethanol and Iso-Octane under Specific Consideration of the Thermal Boundary Layer within the End-Gas

2014-10-13
2014-01-2607
Knock is often the main limiting factor for brake efficiency in spark ignition engines and is mostly attributed to auto-ignition of the unburned mixture in front of the flame. In order to study knock in a systematic way, spark angle sweeps with ethanol and iso-octane have been carried out on single cylinder spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed fuel/air mixtures. Much earlier and stronger knock can be observed for iso-octane compared to ethanol at otherwise same engine operating conditions due to the cooling effect and higher octane number of ethanol, leading to different cycle-to-cycle variation behavior. Detailed chemical kinetic mechanisms are used to compute ignition delay times at conditions relevant to the measurements and are compared to empirical correlations available in literature. The different correlations are used in a knock model approach and are tested against the measurement data.
Journal Article

Numerical Modelling and Experimental Characterization of a Pressure-Assisted Multi-Stream Injector for SCR Exhaust Gas After-Treatment

2014-10-13
2014-01-2822
Simulations for a pressure-assisted multi-stream injector designed for urea-dosing in a selective catalytic reduction (SCR) exhaust gas system have been carried out and compared to measurements taken in an optically accessible high-fidelity flow test rig. The experimental data comprises four different combinations of mass flow rate and temperature for the gas stream with unchanged injection parameters for the spray. First, a parametric study is carried out to determine the importance of various spray sub-models, including atomization, spray-wall interaction, buoyancy as well as droplet coalescence. Optimal parameters are determined using experimental data for one reference operating condition.
Journal Article

Fluid Dynamic Comparison of AdBlue Injectors for SCR Applications

2015-09-06
2015-24-2502
The injection process of urea-water solution (AdBlue) determines initial conditions for reactions and catalysis and is fundamentally responsible for optimal operation of selective catalytic reduction (SCR) systems. The spray characteristics of four, commercially available, injectors (one air-assisted and three pressure-driven with different nozzle-hole configurations) are investigated with non-intrusive measuring techniques. Injection occurred in the crossflow of a channel blowing preheated air in an exhaust duct similar configuration. The effect of several gas temperatures and flows on the spray propagation and entrainment has been extensively studied by shadow imaging. Shadow images, in addition, show that the spray of the pressure-driven injectors is only marginally affected by the gas crossflow. In contrast, the air assisted spray is strongly deflected by the gas, the effect increasing with increasing gas flow.
Journal Article

Comparison and Sensitivity Analysis of Turbulent Flame Speed Closures in the RANS G-Equation Context for Two Distinct Engines

2016-10-17
2016-01-2236
Three-dimensional reactive computational fluid dynamics (CFD) plays a crucial role in IC engine development tasks complementing experimental efforts by providing improved understanding of the combustion process. A widely adopted combustion model in the engine community for (partially) premixed combustion is the G-Equation where the flame front is represented by an iso-level of an arbitrary scalar G. A convective-reactive equation for this iso-surface is solved, for which the turbulent flame speed ST must be provided. In this study, the commonly used and well-established Damköhler approach is compared to a novel correlation, derived from an algebraic closure for the scalar dissipation of reaction progress as proposed by Kolla et al. [1].
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

Experimental and Numerical Investigation of the Engine Operational Conditions’ Influences on a Small Un-Scavenged Pre-Chamber’s Behavior

2017-09-04
2017-24-0094
Despite significant benefits in terms of the ignition enhancement, the strength and timing of the turbulent flame jets subsequently issuing into the main chamber strongly depend on the pre-chamber combustion process and, thus, are sensitive to the specific engine operating conditions it experienced. This poses considerable difficulties in optimizing engine operating conditions as well as controlling engine performance. This paper investigates the influence of engine operating conditions on the pre-chamber combustion event using both experimental and numerical methods. A miniaturized piezo-electric pressure transducer was designed to be placed inside the engine cylinder head to record the pre-chamber inner volume pressure, in addition to conventional pressure indication inside the main chamber.
Journal Article

The Effect of Cycle-to-Cycle Variations on the NOx-SFC Tradeoff in Diesel Engines under Long Ignition Delay Conditions

2017-09-04
2017-24-0100
Cycle-to-cycle variations in internal combustion engines are known to lead to limitations in engine load and efficiency, as well as increases in emissions. Recent research has led to the identification of the source of cyclic variations of pressure, soot and NO emissions in direct injection common rail diesel engines, when employing a single block injection and operating under long ignition delay conditions. The variations in peak pressure arise from changes in the diffusion combustion rate, caused by randomly occurring in-cylinder pressure fluctuations. These fluctuations result from the excitation of the first radial mode of vibration of the cylinder gases which arises from the rapid premixed combustion after the long ignition delay period. Cycles with high-intensity fluctuations present faster diffusion combustion, resulting in higher cycle peak pressure, as well as higher measured exhaust NO concentrations.
Journal Article

Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine

2018-04-03
2018-01-0258
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging.
Journal Article

Transient simulation of NOx reduction over a Fe-Zeolite catalyst in an NH3-SCR system and study of the performance under different operating conditions

2011-08-30
2011-01-2084
The NO reduction in an ammonia SCR converter has been simulated by a 1D+1D model for a single representative channel to parametrically study the characteristics of the system under typical operating conditions. An appropriate model has been selected interpreting the chemical behavior of the system and the parameters are calibrated based on a comprehensive set of experiments with an Fe-Zeolite washcoated monolith for different feed concentrations, temperatures and flow rates. Physical and chemical properties are determined as well as kinetics and rate parameters and the model has been verified by experimental data at different operating conditions. Three different mechanisms for the surface kinetics to model NO reduction have been assessed and the results have been compared in the cases of steady DeNO performance and transient response of the system. Ammonia inhibition is considered in the model since it has a major effect specifically under transient operating conditions.
Technical Paper

Clean Engine Vehicle A Natural Gas Driven Euro-4/SULEV with 30% Reduced CO2-Emissions

2004-03-08
2004-01-0645
The goal of the Clean Engine Vehicle project (CEV) was the conversion of a gasoline engine to dedicated natural gas operation in order to achieve a significant reduction in CO2 emissions. The targeted reduction was 30% compared with a gasoline vehicle with similar performance. Along with the reduction in emissions, the second major requirement of the project, however, was compliance of the results with Euro-4 and SULEV emission limits. The project entailed modifications to the engine and the pre-existing model-based engine control system, the introduction of an enhanced catalytic converter and downsizing and turbocharging of the engine. As required by the initiators of the project, all components used were commonly available, some of them just being optimized or modified for natural gas operation.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Spray Model Based Phenomenological Combustion Description and Experimental Validation for a Dual Fuel Engine

2017-09-04
2017-24-0098
The operation of dual fuel engines, operated with natural gas as main fuel, offers the potential of substantial savings in CO2. Nevertheless, the operating map area where low pollutant emissions are produced is very narrow. Especially at low load, the raw exhaust gas contains high concentrations of unburned methane and, with high pilot fuel portions due to ignition limitations, also soot. The analysis of the combustion in those conditions in particular is not trivial, since multiple combustion modes are present concurrently. The present work focuses on the evaluation of the individual combustion modes of a dual fuel engine, operated with natural gas as main and diesel as pilot fuel, using a combustion model. The combustion has been split in two partwise concurrent combustion phases: the auto-ignition phase and the premixed flame propagation phase.
Technical Paper

Influence of Fuel Composition and Combustion Process on Thermodynamic Parameters of SI Engines

2012-09-10
2012-01-1633
In the field of heavy-duty applications almost all engines apply the compression ignition principle, spark ignition is used only in the niche of CNG engines. The main reason for this is the high efficiency advantage of diesel engines over SI engines. Beside this drawback SI engines have some favorable properties like lower weight, simple exhaust gas aftertreatment in case of stoichiometric operation, high robustness, simple packaging and lower costs. The main objective of this fundamental research was to evaluate the limits of a SI engine for heavy-duty applications. Considering heavy-duty SI engines fuel consumption under full load conditions has a high impact on CO₂ emissions. Therefore, downsizing is not a promising approach to improve fuel consumption and consequently the focus of this work lies on the enhancement of thermal efficiency in the complete engine map, intensively considering knocking issues.
Technical Paper

Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine

2012-04-16
2012-01-0825
The behavior of spray auto-ignition and combustion of a diesel spray in a lean premixed methane/air charge was investigated. A rapid compression expansion machine with a free-floating piston was employed to reach engine-relevant conditions at start of injection of the micro diesel pilot. The methane content in the lean ambient gas mixture was varied by injecting different amounts of methane directly into the combustion chamber, the ambient equivalence ratio for the methane content ranged from 0.0 (pure air) to 0.65. Two different nozzle tips with three and six orifices were employed. The amount of pilot fuel injected ranged between 0.8 and 1.8 percent of the total energy in the combustion chamber. Filtered OH chemiluminescence images of the combustion were taken with a UV-intensified high-speed camera through the optical access in the piston.
Technical Paper

A Quasi-Dimensional Model for Estimating the Influence of Hydrogen-Rich Gas Addition on Turbulent Flame Speed and Flame Front Propagation in IC-SI Engines

2005-04-11
2005-01-0232
Addition of hydrogen-rich gas to gasoline in internal combustion engines is gaining increasing interest, as it seems suitable to reach near-zero emission combustion, able to easily meet future stringent regulations. Bottled gas was used to simulate the output of an on-board reformer (21%H2, 24%CO, 55%N2). Measurements were carried out on a 4-stroke, 2-cylinder, 0.5-liter engine, with EGR, in order to calculate the heat release rate through a detailed two-zone model. A quasi-dimensional model of the flame was developed: it consists of a geometrical estimate of the flame surface, which is then coupled with the heat release rate. The turbulent flame speed can then be inferred. The model was then applied to blends of gasoline with hydrogen-rich gas, showing the effect on the flame speed and transition from laminar to turbulent combustion.
Technical Paper

Numerical Investigation of Nozzle-Geometry Variations and Back-Pressure Changes on High Pressure Gas Injections under Application-Relevant Conditions

2018-04-03
2018-01-1138
In the present work numerical simulations were carried out investigating the effect of fuel type, nozzle-geometry variations and back-pressure changes on high-pressure gas injections under application-relevant conditions. Methane, hydrogen and nitrogen with a total pressure of 500 bar served as high-pressure fuels and were injected into air at rest at 200 bar and 100 bar. Different nozzle shapes were simulated and the analysis of the results lead to a recommendation for the most advantageous geometry regarding jet penetration, volumetric growth, mixing enhancement and discharge coefficient. Additionally an artificial inlet boundary conditions was tested for the use with real-gas thermodynamics and was shown to be capable of reducing the simulation time significantly.
Technical Paper

POMDME as an Alternative Pilot Fuel for Dual-Fuel Engines: Optical Study in a RCEM and Application in an Automotive Size Dual-Fuel Diesel Engine

2018-09-10
2018-01-1734
Dual-fuel natural gas engines are seen as an attractive solution for simultaneous reduction of pollutant and CO2 emissions while maintaining high engine thermal efficiency. However, engines of this type exhibit a tradeoff between misfire as well as high UHC emissions for small pilot injection amounts and higher emissions of soot and NOX for operation strategies with higher pilot fuel proportion. The aim of this study was to investigate POMDME as an alternative pilot fuel having the potential to mitigate the emissions tradeoff, enabling smokeless combustion due to high degree of oxygenation, and being less prone to misfire due to its higher cetane number. Furthermore, POMDME can be synthetized carbon neutrally. First, characteristics of POMDME ignition in methane/air mixture and the transition into premixed flame propagation were investigated optically in a rapid compression-expansion machine (RCEM) by employing Schlieren and OH* chemiluminescence imaging.
X