Refine Your Search

Topic

Search Results

Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Model Development for Control Purposes

2007-04-16
2007-01-0383
Multi-jet injection strategies open significant opportunities for the combustion management of the modern diesel engine. Splitting up the injection process into 5 steps facilitates the proper design of the combustion phase in order to obtain the desired torque level, whilst attempting a reduction in emissions, particularly in terms of NOx. Complex 3-D models are needed in the design stage, where components such as the injector or combustion chamber shape have to be determined. Alternatively, zero-dimensional approaches are more useful when fast interpretation of experimental data is needed and an optimization of the combustion process should be obtained based on actual data. For example, zero-dimensional models allow a quick choice of optimum control settings for each engine operating condition, avoiding the need to test all the possible combinations of engine control parameters.
Technical Paper

UEGO-based Exhaust Gas Mass Flow Rate Measurement

2012-09-10
2012-01-1627
New and upcoming exhaust emissions regulations and fuel consumption reduction requirements are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. Especially in the case of Compression Ignition (CI) engines, the HC-CO-NOx-PM after-treatment system is becoming extremely expensive and sophisticated, and the necessity to further reduce engine-out emission levels, without significantly penalizing fuel consumption figures, may lead to the adoption of intricate and challenging intake-exhaust systems configurations. The adoption of both long- and short-route Exhaust Gas Recirculation (EGR) systems is one example of such situation, and the need to precisely measure (or estimate) mass flow rates in the various elements of the gas exchange circuit is one of the consequences.
Technical Paper

A Mean Value Model of the Exhaust System with SCR for an Automotive Diesel Engine

2009-09-13
2009-24-0131
Nowadays requirements towards a reduction in fuel consumption and pollutant emissions of Internal Combustion Engines (ICE) keep on pushing manufacturers to improve engines performance through the enhancement of existing subsystems (e.g.: electronic fuel injection, air systems) and the introduction of specific devices (e.g.: exhaust gas recirculation systems, SCR, …). Modern systems require a combined design and application of different after-treatment devices. Mathematical models are useful tools to investigate the complexity of different system layouts, to design and to validate (HIL/SIL testing) control strategies for the after-treatment management. This study presents a mean value model of an exhaust system with SCR; it has been coupled with a common rail diesel engine combustion black box model (Neural Network based). So, dedicated models for exhaust pipes, oxidation catalyst, diesel particulate filter and selective catalytic converter are developed.
Technical Paper

A thermodynamic Mean Value Model of the intake and exhaust system of a turbocharged engine for HiL/SiL applications.

2009-09-13
2009-24-0121
Regarding automotive applications, Internal Combustion Engines (ICE) have become very complex plants to comply with present and future requirements in reduction of fuel consumption, pollutant emissions and performance improvement. As a consequence, the development of engine control and diagnostic system is a key aspect in the powertrain design. Mathematical models are useful tools in this direction, with applications that range from the definition of optimised management systems, to Hardware- and Software-in-the-Loop testing (HiL and SiL) and to modelbased control strategies. To this extent an original library has been developed by the authors for the simulation of last generation automotive engines. Library blocks were used to assembly a sub-model of the typical intake and exhaust system of a turbocharged engine (with VGT, intercooler, EGR circuit with cooler and throttle).
Technical Paper

A detailed Mean Value Model of the exhaust system of an automotive Diesel engine

2008-01-09
2008-28-0027
Theoretical models are useful tools in the design of engine control systems, with applications that range from the design of engine layout, the definition of optimised management systems, to hardware-in-the-loop testing (HiL) and to model-based control strategies. To define theoretical models for control-oriented applications, an original library has been built up at the University of Parma for the simulation of the intake and exhaust systems of automotive turbocharged engines. Starting from this library, a Mean Value Model (MVM) of a Diesel engine, with variable-geometry turbocharger (VGT), EGR and throttle valve, has been developed for a small automotive application. In the paper the matching of the engine model with a detailed model of the exhaust system (developed by Magneti Marelli Powertrain) is presented.
Technical Paper

Control Oriented Modeling of SCR Systems for Automotive Application

2017-09-04
2017-24-0121
In the last decades, NOx emissions legislations for Diesel engines are becoming more stringent than ever before and the selective catalytic reduction (SCR) is considered as the most suitable technology to comply with the upcoming constraints. Model-based control strategies are promising to meet the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-selective catalytic reduction. In this paper, a control oriented model of a Cu-zeolite urea-SCR system for automotive diesel engines is presented. The model is derived from a quasi-dimensional four-state model of the urea-SCR plant. To make it suitable for the real-time urea-SCR management, a reduced order one-state model has been developed, with the aim of capturing the essential behavior of the system with a low computational burden. Particularly, the model allows estimating the NH3 slip that is fundamental not only to minimize urea consumption but also to reduce this unregulated emission.
Technical Paper

Development and Experimental Validation of a Control Oriented Model of SCR for Automotive Application

2018-04-03
2018-01-1263
1 The Selective Catalytic reduction (SCR) using urea as reducing agent is currently regarded as the most promising after-treatment technology in order to comply with strict RDE targets for NOX and particulate in Diesel application. Model-based control strategies are promising to satisfy the demands of high NOX conversion efficiency and low tailpipe ammonia slip. This paper deals with the development of a control oriented model of a Cu-zeolite urea-SCR system for automotive Diesel engines. The model is intended to be used for the real-time urea-SCR management, depending on engine NOX emissions and ammonia storage. In order to ensure suitable computational demand for the on-board implementation, a reduced order one-state model of ammonia storage has been derived from a quasi-dimensional four-state model of the urea-SCR plant.
Technical Paper

Knock Control Based on Engine Acoustic Emissions: Calibration and Implementation in an Engine Control Unit

2017-03-28
2017-01-0785
In modern turbocharged downsized GDI engines the achievement of maximum thermal efficiency is precluded by the occurrence of knock. In-cylinder pressure sensors give the best performance in terms of abnormal combustion detection, but they are affected by long term reliability issues and still constitute a considerable part of the entire engine management system cost. To overcome these problems, knock control strategies based on engine block vibrations or ionization current signals have been developed and are widely used in production control units. Furthermore, previous works have shown that engine sound emissions can be real-time processed to provide the engine management system with control-related information such as turbocharger rotational speed and knock intensity, demonstrating the possibility of using a multi-function device to replace several sensors.
Technical Paper

An Integrated Simulation Methodology of Thermal Management Systems for the CO2 Reduction after Engine Cold Start

2015-04-14
2015-01-0343
The emissions limits of CO2 for vehicles are becoming more stringent with the aim of reducing greenhouse gas emissions and improve fuel economy. The New European Driving Cycle (NEDC) is adopted to measure emissions for all new internal combustion engines in the European Union, and it is performed on cold vehicle, starting at a temperature of 22°C ± 2°C. Consequently, the cold-start efficiency of internal combustion engine is becoming of predominant interest. Since at cold start the lubricant oil viscosity is higher than at the target operating temperature, the consequently higher energy losses due to increased frictions can substantially affect the emission cycle results in terms of fuel consumption and CO2 emissions. A suitable thermal management system, such as an exhaust-to-oil heat exchanger, could help to raise the oil temperature more quickly.
Journal Article

Real-Time Estimation of Intake O2 Concentration in Turbocharged Common-Rail Diesel Engines

2013-04-08
2013-01-0343
Automotive engines and control systems are more and more sophisticated due to increasingly restrictive environmental regulations. Particularly in both diesel and SI lean-burn engines NOx emissions are the key pollutants to deal with and sophisticated Engine Management System (EMS) strategies and after-treatment devices have to be applied. In this context, the in-cylinder oxygen mass fraction plays a key-role due its direct influence on the NOx formation mechanism. Real-time estimation of the intake O₂ charge enhances the NOx prediction during engine transients, suitable for both dynamic adjustments of EMS strategies and management of aftertreatment devices. The paper focuses on the development and experimental validation of a real-time estimator of O₂ concentration in the intake manifold of an automotive common-rail diesel engine, equipped with turbocharger and EGR system.
Journal Article

Modeling Analysis of Waste Heat Recovery via Thermo Electric Generators for Fuel Economy Improvement and CO2 Reduction in Small Diesel Engines

2014-04-01
2014-01-0663
This paper deals with modeling and analysis of the integration of ThermoElectric generators (TEG) into a conventional vehicle, specifically aimed at recovering waste heat from exhaust gases. The model is based on existing and commercial thermoelectric materials, specifically Bi2Te3, having ZTs not exceeding 1 and efficiency below 5%, but a trade-off between cost and performance that would be acceptable for automotive applications. TEGs operate on the principle of thermoelectric energy conversion via Seebeck effect, utilizing thermal gradients to generate electric current, with exhaust gases at the hot side and coolant at the cold side. In the simulated configuration the TEG converters are interfaced with the battery/alternator supporting the operation of the vehicle, reducing the energy consumption due to electrical accessories and HVAC.
Journal Article

Diesel Exhaust Fluid (DEF) Supply System Modelling for Control and Diagnosis Applications

2015-01-14
2015-26-0090
The Selective Catalytic Reduction (SCR) system installed on the exhaust line is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for light and medium duty trucks, large passenger cars and off-highway vehicles, to fulfill future emission legislation. Some vehicles of these last categories, equipped with SCR, have been already put on the market, not only in the US, where the emission legislation on Diesel vehicles is more restrictive, but also in Europe, demonstrating to be already compliant with the upcoming Euro 6. Moreover, new and more stringent emission regulations and homologation cycles are being proposed all over the world, with a consequent rapidly increasing interest for this technology. As a matter of fact, a physical model of the Diesel Exhaust Fluid (DEF) supply system is very useful, not only during the product development phase, but also for the implementation of the on-board real-time controller.
Journal Article

Technology Comparison for Spark Ignition Engines of New Generation

2017-09-04
2017-24-0151
New gasoline engine design is highly influenced by CO2 and emission limits defined by legislations, the demand for real conditions fuel economy, higher torque, higher specific power and lower cost. To reach the requirements coming from the end-users and legislations, especially for SI engines, several technologies are available, such as downsizing, including turbocharging in combination with direct injection. These technologies allow to solve the main issues of gasoline engines in terms of efficiency and performance which are knocking, part-load losses, and thermal stress at high power conditions. Moreover, other possibilities are under evaluation to allow further steps of enhancement for the even more challenging requirements. However, the benefits and costs given by the mix of these technologies must be accurately evaluated by means of objective tools and procedures in order to choose among the best alternatives.
Technical Paper

Remote Combustion Sensing Methodology for PCCI and Dual-Fuel Combustion Control

2015-09-06
2015-24-2420
The increasing request for pollutant emissions reduction spawned a great deal of research in the field of innovative combustion methodologies, that allow obtaining a significant reduction both in particulate matter and NOx emissions. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Prior research has demonstrated that a closed-loop combustion control strategy can be based on the real-time analysis of in-cylinder pressure trace, that provides important information about the combustion process, such as Start (SOC) and Center of combustion (CA50), pressure peak location and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
Technical Paper

A Methodology to Enhance Design and On-Board Application of Neural Network Models for Virtual Sensing of Nox Emissions in Automotive Diesel Engines

2013-09-08
2013-24-0138
The paper describes suited methodologies for developing Recurrent Neural Networks (RNN) aimed at estimating NOx emissions at the exhaust of automotive Diesel engines. The proposed methodologies particularly aim at meeting the conflicting needs of feasible on-board implementation of advanced virtual sensors, such as neural network, and satisfactory prediction accuracy. Suited identification procedures and experimental tests were developed to improve RNN precision and generalization in predicting engine NOx emissions during transient operation. NOx measurements were accomplished by a fast response analyzer on a production automotive Diesel engine at the test bench. Proper post-processing of available experiments was performed to provide the identification procedure with the most exhaustive information content. The comparison between experimental results and predicted NOx values on several engine transients, exhibits high level of accuracy.
Technical Paper

A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars

2014-04-01
2014-01-1650
In the last years the automotive industry has been involved in the development and implementation of CO2 reducing concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, waste heat recovery technologies. These latter include ThermoElectric Generator (TEG), Rankine cycle and Electric Turbo Compound (ETC) that have been practically implemented on few heavy-duty application but have not been proved yet as effective and affordable solutions for the automotive industry. The paper deals with the analysis of opportunities and challenges of the Electric Turbo Compound for automotive light-duty engines. In the ETC concept the turbine-compressor shaft is connected to an electric machine, which can work either as generator or motor. In the former case the power can satisfy the vehicle electrical demand to drive the auxiliaries or stored in the batteries.
Journal Article

Innovative Techniques for On-Board Exhaust Gas Dynamic Properties Measurement

2013-04-08
2013-01-0305
The purpose of this paper is to present some innovative techniques developed for an unconventional utilization of currently standard exhaust sensors, such as HEGO, UEGO, and NOx probes. In order to comply with always more stringent legislation about pollutant emissions, intake-exhaust systems are becoming even more complex and sophisticated, especially for CI engines, often including one or two UEGO sensors and a NOx sensor, and potentially equipped with both short-route and long-route EGR. Within this context, the effort to carry out novel methods for measuring the main exhaust gas dynamic properties exploiting sensors installed for different purposes, could be useful both for control applications, such as EGR rates estimation, or cost reduction, minimizing the on-board devices number. In this work, a gray-box model for measuring the gas mass flow rate, based on standard NOx sensor operating parameters of its heating circuit, is analyzed.
Technical Paper

Modeling and Optimization of Organic Rankine Cycle for Waste Heat Recovery in Automotive Engines

2016-04-05
2016-01-0207
In the last years, the research effort of the automotive industry has been mainly focused on the reduction of CO2 and pollutants emissions. In this scenario, concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, Waste Heat Recovery technologies have been proposed. These latter include Thermo-Electric Generator (TEG), Organic Rankine Cycle (ORC) and Electric Turbo-Compound (ETC) that have been practically implemented on few heavy-duty applications but have not been proved yet as effective and affordable solutions for passenger cars. The paper deals with modeling of ORC power plant for simulation analyses aimed at evaluating the opportunities and challenges of its application for the waste heat recovery in a compact car, powered by a turbocharged SI engine.
Technical Paper

Electric Low Pressure Fuel Pump Control for Fuel Saving

2013-04-08
2013-01-0339
The trend of CO2 emission limits and the fuel saving due to the oil price increase are important drivers for engines development. The involved technologies have the aim to improve the global engine efficiency, improving combustion and minimizing energy losses. The engine auxiliary devices electrification (i.e. cooling pump or lubricating pump) is a way to reduce not useful energy consumption, because it becomes possible to control them depending on engine operating point. This kind of management can be applied to the electric low pressure fuel pump. Usually the fuel delivery is performed at the maximum flow rate and a pressure regulator discharges the exceeding fuel amount inside the rail (i.e. gasoline engine) or upstream of the high pressure pump (i.e. common rail diesel engine). At part load, especially in diesel application, the electric fuel pump flow is higher than needed for engine power generation.
X