Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends

2016-04-05
2016-01-0876
Gaseous and particulate matter (PM) emissions were assessed from two current technology heavy-duty vehicles operated on CARB ultra-low sulfur diesel (ULSD), hydrotreated vegetable oil (HVO) blends, and a biodiesel blend. Testing was performed on a 2014 model year Cummins ISX15 vehicle and on a 2010 model year Cummins ISB6.7 vehicle. Both vehicles were equipped with diesel oxidation catalysts (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) systems. Testing was conducted over the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS) and Heavy Heavy-Duty Diesel Truck (HHDDT) Transient Cycle. The results showed lower total hydrocarbons (THC), non-methane hydrocarbons (NMHC), and methane (CH4) emissions for the HVO fuels and the biodiesel blend compared to CARB ULSD. Overall, nitrogen oxide (NOx) emissions showed discordant results, with both increases and decreases for the HVO fuels.
Journal Article

Influence of Different Natural Gas Blends on the Regulated Emissions, Particle Number and Size Distribution Emissions from a Refuse Hauler Truck

2012-09-10
2012-01-1583
Natural gas is a potential alternative to conventional liquid fuels for use in automotive internal combustion engines. The primary goal of this study is to understand how gas composition changes might impact the performance or emissions of a natural gas vehicle or engine. For this study, a waste hauler truck equipped with a 2001 Cummins 8.3L C Gas Plus lean burn spark-ignited engine and an oxidation catalyst was operated on the William H. Martin Refuse Truck Cycle (RTC). This cycle was developed to simulate waste hauler operation and consists of a transport segment, a curbside pickup segment, and a compaction segment.
Journal Article

A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles

2015-04-14
2015-01-0957
Biofuels, such as ethanol and butanol, have been the subject of significant political and scientific attention, owing to concerns about climate change, global energy security, and the decline of world oil resources that is aggravated by the continuous increase in the demand for fossil fuels. This study evaluated the potential emissions impacts of different alcohol blends on a fleet of modern gasoline vehicles. Testing was conducted on a fleet of nine vehicles with different combinations of ten fuel blends over the Federal Test Procedure and Unified Cycle. The vehicles ranged in model year from 2007-2014 and included four vehicles with port fuel injection (PFI) fueling and five vehicles with direct injection (DI) fueling. The ten fuel blends included ethanol blends at concentrations of 10%, 15%, 20%, 51%, and 83% by volume and iso-butanol blends at concentrations of 16%, 24%, 32%, and 55% by volume, and an alcohol mixture giving 10% ethanol and 8% iso-butanol in the final blend.
Technical Paper

Gaseous and Particulate Emissions from a Waste Hauler Equipped with a Stoichiometric Natural Gas Engine on Different Fuel Compositions

2016-04-05
2016-01-0799
We assessed gaseous and particulate matter (PM) emissions from a current technology stoichiometric natural gas waste hauler equipped with a 2011 model year 8.9L Cummins Westport ISL-G engine with cooled exhaust gas recirculation (EGR) and three-way catalyst (TWC). Testing was performed on five fuels with varying Wobbe and methane numbers over the William H. Martin Refuse Truck Cycle. The results showed lower nitrogen oxide (NOx) emissions for the low methane fuels (i.e., natural gas fuels with a relatively low methane content) for the transport and curbside cycles. Total hydrocarbon (THC) and methane (CH4) emissions did not show any consistent fuel trends. Non-methane hydrocarbon (NMHC) emissions showed a trend of higher emissions for the fuels containing higher levels of NMHCs. Carbon monoxide (CO) emissions showed a trend of higher emissions for the low methane fuels.
Technical Paper

Criteria Emissions, Particle Number Emissions, Size Distributions, and Black Carbon Measurements from PFI Gasoline Vehicles Fuelled with Different Ethanol and Butanol Blends

2013-04-08
2013-01-1147
The introduction of biofuels is seen as a very important measure to reduce the emissions of greenhouse gases from the transport sector. Currently, ethanol is the most widely used renewable fuel for transportation in the US and with the push to use increasingly higher levels of renewable fuels, there has been an accompanying push to further increase the ethanol level in gasoline. In addition to ethanol, butanol, an alcohol which can be produced from biomass sources, has recently received more attention as an alternative to gasoline for use in spark ignition (SI) engines. For this study, two 2007 model year and one 2012 model year light-duty vehicles equipped with a three-way catalyst (TWC) were employed. For the 2007 model year vehicles, emissions and fuel economy measurements were made for E10 (reference fuel), E15, E20, and B16 fuels. The latter corresponds to a blend of gasoline and 16% of butanol, which is the equivalent of E10 in terms of oxygen content.
Technical Paper

Influence of Different Natural Gas Compositions on the Regulated Emissions, Aldehydes, and Particle Emissions from a Transit Bus

2013-04-08
2013-01-1137
Urban air quality in California can have a large impact on the state's economy, natural and managed ecosystems, and human health and mortality. The use of alternative, low-carbon fuels is considered to be an effective measure to meet strict emissions regulations of particulate matter (PM) and oxides of nitrogen (NOx). Natural gas may be a potential alternative to conventional liquid fuels for use in automotive internal combustion engines, and can be used in fulfilling these requirements. The primary objective of this study is to evaluate the impact of varying natural gas composition on the exhaust emissions from a transit bus equipped with a 2003 Cummins C Gas Plus, lean-burn, spark-ignited natural gas engine and an oxidation catalyst while operating on the Central Business District (CBD) cycle on a chassis dynamometer.
Technical Paper

Emissions, Fuel Economy, and Performance of a Class 8 Conventional and Hybrid Truck

2015-04-14
2015-01-1083
Emissions, fuel economy, and performance are determined over a light and a heavy driving cycle designed to represent the vehicles in-use driving patterns. The vehicles are 2010 class 8 Freightliner tractor trucks equipped with Cummins engines with Selective Catalytic Reduction and Diesel Particulate Filter emission control systems. The hybrid has lower carbon dioxide emissions, better fuel economy, and nitrogen oxide emissions statistically the same as the conventional. The CO emissions are well below the standards for both vehicles, but they are higher from the hybrid. The higher CO emissions for the hybrid are primarily related to the cooling of the Diesel Oxidation Catalyst (DOC) during the standard 20 minute key-off soak between repeats of the driving cycles. With a 1 minute key-off soak the CO emissions from the hybrid are negative.
X