Refine Your Search

Topic

Author

Search Results

Standard

J1349 Certified Power Engine Data for Ford Expedition / Lincoln Navigator - Level 2

2008-04-10
CURRENT
CPFD2_09EXPNAV
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

J1349 Certified Power Engine Data for GM LLT as used in 2010 Cadillac CTS Wagon - Level 2

2008-12-10
CURRENT
CPGM2_10CADWAG
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

J1349 Certified Power Engine Data for GM LE5 as used in 2007 Pontiac G6 Level 2

2006-07-31
CURRENT
CPGM2_LE5G6
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

J1349 Certified Power Engine Data for Ford as used in 2007 J50C / Mazda CX9 Level 2

2006-10-17
CURRENT
CPFD2_MZDCX9
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

Method to measure the filtration performance of SCR/Urea filters

2021-01-27
WIP
J3245
The purpose of this SCR filter test method is to provide standardized methods for evaluation the filter characteristics of the SCR filter by bench test methods. This, combined with data obtained from application test, maybe used to establish standards of performance for filters when tested by these standard methods. Many variation in requirements of filtration to protect the SCR supply equipment on vehicles and variations in operational conditions make it difficult to specify meaningful “in-service” performance standards by which a filter may be judged. By the use of these standard test methods, test conditions are always the same, and comparison of the laboratory performance of filters may be made with a high degree of confidence. Once the requirement of a particular application are known, performance standards for suitable filters may be established by these test methods, and adequacy of performance of filters for the job may be determined.
Standard

Independent Suspension Drive Unit Spin Loss and Efficiency Testing

2020-12-01
WIP
J3243
This recommended practice describes a spin loss and efficiency test procedure for Independent Drive Units (FDU & RDU) used in light-duty vehicles. The test procedure is conducted on an axle test rig. The test matrix determines the spin loss and efficiency values at three mileage conditions of the axle and utilizes an accelerated break-in procedure.
Standard

Megawatt Charging System for Electric Vehicles

2021-12-15
WIP
J3271
This document describes the megawatt-level DC charging system requirements for couplers/inlets, cables, cooling, communication and interoperability. The intended application is for commercial vehicles with larger battery packs requiring higher charging rates for moderate dwell time. A simplified analog safety signaling approach is used for connection-detection to guarantee de-energized state for unmated couplers with superimposed high speed data for EVSE-EV charging control and other value added services.
Standard

Taxonomy & Definitions for Operational Design Domain (ODD) for Driving Automation Systems

2021-07-15
WIP
J3259
Per SAE J3016 (2021), the Operational Design Domain (ODD) for a driving automation system is defined as “Operating conditions under which a given driving automation system, or feature thereof, is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics.”; in short the ODD defines the limits within which the driving automation system is designed to operate, and as such, will only operate when the parameters described within the ODD are satisfied.. This information Report serves to provide terminology, definitions and taxonomy for use in describing an ODD and respective elements for a driving automation system. This classification and definition of a harmonized set of ODD elements is based on the collection and analysis of existing information from multiple sources.
Standard

Low Collapse Pressure Hydraulic Filter Element – 380 L/min Flow, 3.5 MPa Collapse Pressure, Filtration Ratio = ?? at xx µm

2013-01-02
WIP
J2321/4
This specification sheet establishes requirements for a low collapse pressure configuration filter element of a specific configuration with a minimum filtration ratio of 75 for particles larger than ? μm when designed and tested in accordance with SAE J2321 and this specification sheet. Note: The efficiency and dirt capacity have not yet been determined..
Standard

J2602DA. Digital Annex defining LIN Supplier IDs for ISO 17987

2015-12-10
WIP
J2602DA
This document is a Digital Annex defining LIN Supplier IDs for ISO 17987. New LIN Supplier ID requested will be reviewed by the J2602 Task Force and then the approved IDs will be added to the J2602DA to record Supplier contact details.
Standard

Electric Park Brake Sizing

2017-10-16
WIP
J3158
The scope of this new recommended practice should include, but not necessarily be limited to: 1. Define vehicle operating conditions used to drive MOC-EPB actuator design and selection 2. Define brake corner operating conditions (e.g. temperature and state of burnish) used to drive MOC-EPB actuator design and selection 3. Define actuator operating conditions (e.g. temperature, voltage, current limit, and state of wear) used to drive MOC-EPB actuator design and selection 4. Define methodology for addressing part to part variation in performance
Standard

Procedure for Mapping Fuel Consumption for small spark ignited engines

2017-03-22
WIP
J3139
The purpose of this SAE Standard is to provide a standardized test procedure for measuring the fuel consumption of spark ignited engines in the range of 225-999cc used in the consumer and commercial turf industry. The load points and associated fuel consumption rates will be measured as the engine operates on the engine speed governor, reflecting how the user will operate the equipment. The fuel consumption calculated in gallons of useage per hour will be derived from a specified engine speed and load map to be communicated universally to end users.
X