Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Spark Arrester Test Carbon

2013-03-26
CURRENT
J997_201303
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Standard

Spark Arrester Test Carbon

1990-09-01
HISTORICAL
J997_199009
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Standard

Spark Arrester Test Carbon

1988-06-01
HISTORICAL
J997_198806
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Standard

Spark Arrester Test Carbon

1988-10-01
HISTORICAL
J997_198810
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Sleeve Type Half Bearings

1978-11-01
HISTORICAL
J506B_197811
This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.
Standard

Electric Vehicle (E-Vehicle) Crash Test Lab Safety Guidelines

2015-12-17
CURRENT
J3040_201512
The special risks associated with conducting crash tests on E-Vehicles can be divided into two main categories; 1) thermal activity inside the battery (resulting from electrical or mechanical abuse) may lead to energetic emission of harmful and/or flammable gases, thermal runaway, and potentially fire, and 2) the risk of electrocution. Procedures to ensure protection from all types of risk must be integrated into the entire crash test process. This informational report is intended to provide guidance in this endeavor using current best practices at the time of this publication. As both battery technology and battery management system technology is in a phase of expansion, the contents of this report must then be gaged against current technology of the time, and updated periodically to retain its applicability and usefulness.
Standard

Two-Stroke-Cycle Gasoline Engine Lubricants Performance and Service Classification

2003-07-31
CURRENT
J2116_200307
This SAE Standard was prepared by Technical Committee 1, Engine Lubrication, of SAE Fuels and Lubricants Council. The intent is to improve communications among engine manufacturers, engine users, and lubricant marketers in describing lubricant performance characteristics. The key objective is to ensure that a correct lubricant is used in each two-stroke-cycle engine.
Standard

High Temperature Materials for Exhaust Manifolds

1999-08-01
HISTORICAL
J2515_199908
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

High Temperature Materials for Exhaust Manifolds

2017-12-20
CURRENT
J2515_201712
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

ELASTOMERIC BUSHING "TRAC" APPLICATION CODE

1994-10-01
HISTORICAL
J1883_199410
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Internal Combustion Engines--Piston Rings--Expander/Segment Oil Control Rings

2008-06-30
CURRENT
J2004_200806
This SAE Standard is equivalent to ISO Standard 6627 TR. Differences, where they exist, are shown in Appendix A with associated rationale. This SAE Standard specifies the dimensional features of commonly used oil control rings having two steel segments (rails) separated and expanded by one steel expander/spacer. The segments vary in width from 0.4 to 0.6 mm. The assembly width ranges from 2.5 to 4.75 mm. The 4.75 mm width is equivalent to existing 3/16 in applications. Expander design will vary considerably with piston ring manufacturer. The total circumferential deflection and the piston groove depth should be considered when designing these oil rings to optimize the fit of the ring assembly into the piston groove. This document applies to oil control rings up through 125 mm for reciprocating internal combustion engines. It may also be used for piston rings of compressors working under similar conditions.
Standard

Internal Combustion Engines--Piston Rings--Rectangular Rings

2008-06-30
CURRENT
J1997_200806
This SAE Standard specifies the essential dimensional features of R, b, and M rectangular piston ring types. Dimensional tables 8 and 9 offer the choice of two radial wall thicknesses: a. radial wall thickness "regular" (table 8); b. radial wall thickness "D/22" (table 9). The requirements of this document apply to rectangular rings for reciprocating internal combustion piston engines up to and including 200 mm diameter. They may also be used for piston rings of compressors working under similar conditions.
Standard

Internal Combustion Engines--Piston Rings--Rectangular Rings With Narrow Ring Width

1990-06-01
HISTORICAL
J1998_199006
This SAE Standard specifies the essential dimensional features of R, B, and M rectangular piston ring types with narrow ring width. Dimensional tables 8 and 9 allow for the use of cast iron (table 8) or steel (table 9). Since the modulus of elasticity of steel rings is higher than that of cast iron rings, the fluctuation in the surface pressure will become greater if the free gap is set as the reference for force. Therefore, forces are set using the surface pressure as the reference, in order to minimize the effect of the fluctuation. The requirements of this document apply to rectangular rings for reciprocating internal combustion engines up to and including 90 mm diameter for cast iron rings and up to and including 100 mm diameter for steel. They may also be used for piston rings of compressors working under similar conditions.
X