Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Adaptive Nonlinear Model Predictive Cruise Controller: Trailer Tow Use Case

2017-03-28
2017-01-0090
Conventional cruise control systems in automotive applications are usually designed to maintain the constant speed of the vehicle based on the desired set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods namely adopting the Model Predictive Control (MPC) technology utilizing the road grade preview information and allowance of the vehicle speed variation. This paper is focused on the extension of the Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier by application to the trailer tow use-case. As the connected trailer changes the aerodynamic drag and the overall vehicle mass, it may lead to the undesired downshifts for the conventional cruise controller introducing the fuel economy losses. In this work, the ANLMPC concept is extended to avoid downshifts by translating the downshift conditions to the constraints of the underlying optimization problem to be solved.
Journal Article

Cruise Controller with Fuel Optimization Based on Adaptive Nonlinear Predictive Control

2016-04-05
2016-01-0155
Automotive cruise control systems are used to automatically maintain the speed of a vehicle at a desired speed set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods. The objective of this paper is to validate an Adaptive Nonlinear Model Predictive Controller (ANLMPC) implemented in a vehicle equiped with standard production Powertrain Control Module (PCM). Application and analysis of Model Predictive Control utilizing road grade preview information has been reported by many authors, namely for commercial vehicles. The authors reported simulations and application of linear and nonlinear MPC based on models with fixed parameters, which may lead to inaccurate results in the real world driving conditions. The significant noise factors are namely vehicle mass, actual weather conditions, fuel type, etc.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

Evolution of the New Ford Aerostar Impact Extruded Aluminum Wheel

1984-11-01
841694
Ford's continued effort to improve fuel economy in automotive applications has emphasized the need for lightweight components that retain all the toughness associated with Ford truck vehicle characteristics. The application of an impact extrusion process to wheel design and manufacture, for Ford Aerostar, provides strength, performance and style more efficiently than other traditional processes. It results in a valuable 33% weight saving over comparable HSLA steel wheels, and provides the customer with uncompromised value. The Ford Aerostar Impact Extruded Aluminum Wheel was designed to be of one-piece construction, manufactured from a less than 1″ thick aluminum wafer-shaped blank. The process permits manufacture in half the steps of a conventional stamped steel wheel, and eliminates extensive machining required with forged or cast aluminum wheels.
Technical Paper

Mass Optimization of a Front Floor Reinforcement

2020-01-13
2019-36-0149
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing.
X