Refine Your Search

Topic

Author

Search Results

Journal Article

Purge Modeling for New Propulsion System Technology Applications

2011-04-12
2011-01-0858
This paper presents a purge system model developed for hybrid electric vehicle (HEV) applications. Assessment of purge capability is critical to HEV vehicles due to frequent engine off operation which limits carbon canister purging. The purge model is comprised of subsystems representing purge control strategy, carbon canister and engine plant. The paper is focused on modeling of the engine purge control feature. The purge model validation and purge capability predictions for an example HEV vehicle are presented and discussed.
Technical Paper

Statistical Analysis of Rigid Body Modes of Engine Mounting System Due to Mount Rates Variability

2006-10-31
2006-01-3466
While the engine mount rates need to be optimized to achieve the required frequency alignment and modal decoupling for quality performance, the robustness of the system needs to be studied as well. If a system exhibits acceptable modal characteristics with nominal optimized rates, the sensitivity of the system to variation of the rates from their nominal values affects the robustness of the system. Different factors can cause variation of the rates. Among them are rate changes from part to part arising from manufacturing process. In this paper the effect of mount rates variability on the modal characteristics is discussed. Monte Carlo simulation is used to predict how the rigid body modes and their couplings vary when the rate for each mount changes according to its statistical parameters. Through different examples the statistical variability of the modes to the rates variability is presented.
Technical Paper

Mass Optimization of a Front Floor Reinforcement

2020-01-13
2019-36-0149
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing.
Technical Paper

Light Truck Stabilizer Bar Attachment Non-linear Fatigue Analysis

1998-11-16
982833
The stabilizer bar attachments problem can not be simply analyzed by using linear FEA methodology. The large deformation in the bushing, the elastic-plastic material property in the bushing retainer bracket, and the contact between different parts all add complexity to the problem and result in the need for an analysis method using a non-linear code, such as ABAQUS. The material properties of the bushing were experimentally determined and applied to the CAE model. It was found that using strains to estimate the fatigue life was more accurate and reliable than using stress. Many modeling techniques used in this analysis were able to improve analysis efficiency.
Technical Paper

Application of LIN Network Interface for Ford South America Vehicles

2003-11-18
2003-01-3692
Some communication buses are too powerful and expensive for simple digital on/off operations such as activating lights, wipers, windows, etc. For these applications the LIN bus is currently the most promising communication protocol across the world's automotive industry. This paper addresses a study using LIN (Local Interconnect Network) for Ford South America vehicles. This will propose a new electrical architecture designed with LIN network, which will be replacing the conventional rear and front lights cables in Trucks, where other higher protocols, such as CAN, are not cost effective. LIN is a new low cost serial communication system intended to be used for distributed electronic system that will allow gaining further quality enhancement and cost reduction on cables, connectors and switches.
Technical Paper

Pickups Vehicle Dynamics: Ride and Skate

2003-11-18
2003-01-3588
The driver judges his vehicle based on subjective aspects. Vehicle dynamics characteristics including ride and handling have a major impact on this evaluation. For this reason, vehicle manufactures have grown investments in order to improve vehicle dynamics behavior. Subjective evaluation and customer satisfaction research show which dynamic characteristics need to be improved. CAE models, after being validated based on experimental measures, give a good insight on vehicle dynamic behavior and guide change proposals. At end, new subjective evaluations and measures are carried out in order to check the real improvement of CAE proposals. This work shows the use of the described methodology for a pickup vehicle dynamics evaluation. One of the major complains of pickup drives is related to ride quality. Thinking of that feature the evaluation process considers several phenomena, such as abruptness, front topping, front bottoming, head toss and rear aftershake.
Technical Paper

Co-fueling of Urea for Diesel Cars and Trucks

2002-03-04
2002-01-0290
Urea SCR is an established method to reduce NOx in dilute exhaust gas. The method is being used currently with stationary powerplants, and successful trials on motor vehicles have been conducted. The reason most often cited for rejecting urea SCR is lack of urea supply infrastructure, yet urea and other high nitrogen products are traded as commodities on the world market as a fertilizer grade, and an industrial grade is emerging. For a subset of commercial vehicles, urea can be provided by service personnel at designated terminals. But this approach does not support long distance carriers and personal use vehicles. The preferred delivery method is to add urea during vehicle refueling through a common fuel nozzle and fill pipe interface: urea / diesel co-fueling. Aqueous urea is well suited to delivery in this fashion.
Technical Paper

Considerations about Residual Stress Due to Stamping Process in Fatigue Life Prediction

2002-11-19
2002-01-3523
Usually in Computer Aided Engineering (CAE) analyses, Computer Aided Design (CAD) data is meshed and analyzed with regard to displacements and stresses. So far, it is not common to account for residual stresses due to the manufacturing process in these analyses. This work proposes a methodology based on simplified abaqus Standard/Explicit models to evaluate residual stresses due to stamping and bending manufacturing process in truck rails and suggests a methodology to use this residual stress data in truck frame CAE durability analysis making it possible to compare how different a predicted fatigue life can be when residual stresses are considered.
Technical Paper

Development of Pneumatic Suspension Type Full Air for Commercial Vehicles

2016-05-11
2016-36-0069
The air suspension development and application has becoming increasingly applied also in commercial vehicles, offering to the driver more dynamic comfort as well as contributing to the reduction of impact loads on highways. Through this project pursuit show the analysis and application of an air suspension system for commercial tractor vehicles application. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension′s stiffness under different conditions of usage, laden and unladen. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain the vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions. For entire development were also used quality tools, considering the possible failure modes and effects as well as virtual simulation tools (Adams) and bench validations.
Technical Paper

Development of a Commercial Truck Parabolic Leaf Spring Using CAE Simulation with Correlated Experimental Stress Analysis Results

2017-11-07
2017-36-0126
The development costs that new design requires are subject to everyday discussions and saving opportunities are mandatory. Using CAE to predict design changes can avoid excessive costs with prototypes parts, considering the high reliability those current mathematical models can provide. This paper presents the methodology used during the development of a parabolic leaf spring for the rear suspension of a commercial truck, considering mainly the parabolic profiles and stress distribution on the leaves, calculated using CAE software (ANSYS) and experimental tests to measure the actual stress on each leaf, certifying the correlation between computational calculations and real stress on the parts during bench and vehicle evaluations.
Technical Paper

Real-time Crash Detection and Its Application in Incident Reporting and Accident Reconstruction

2017-03-28
2017-01-1419
Characterizing or reconstructing incidents ranging from light to heavy crashes is one of the enablers for mobility solutions for fleet management, car-sharing, ride-hailing, insurance etc. While crashes involving airbag deployment are noticeable, light crashes without airbag deployment can be hidden and most drivers do not report these incidents. In this paper, we are using vehicle responses together with a dynamics model to trace back if abnormal forces have been applied to a vehicle so as to detect light crashes. The crash location around the perimeter of the vehicle, the direction of the crash force, and the severity of the crashes are all determined in real-time based on on-board sensor measurements which has further application in accident reconstruction. All of this information will be integrated to a feature called “Incident Report”, which enable reporting of minor accidents to the relevant entities such as insurance agencies, fleet managements, etc.
Technical Paper

Deconstruction of UN38.3 into a Process Flowchart

2017-03-28
2017-01-1208
This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
Technical Paper

Development of Full Air Pneumatic Suspension Type for Commercial Vehicles

2017-03-28
2017-01-1490
The air suspension development and its applications have becoming increasingly relevant for commercial vehicles to provide dynamic ride comfort to driver and reduce the load impact onto driver and or cargo. This paper shows the analysis and application of an air suspension system for commercial tractor vehicles and its dynamic influence. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension´s stiffness under different conditions of usage, laden and unladed. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions.
Technical Paper

Hydroformed Tube Modeling in Crash FEA Model

2003-03-03
2003-01-0258
Hydroformed truck frame side rails from circular tubes are studied for gage variations and pre-strain to be used in crash FEA modeling practice. This study provides simplified models that achieve feasible correlation with actual tests. Meanwhile, from plasticity theory we derive a forming equation in conjunction with forming limit diagrams to estimate material properties for hydroformed rails.
Technical Paper

A Framework for Reliable and Durable Product Design

1996-08-01
961794
In this paper, a simplified and systematic approach to integrate reliability and durability aspects in design process is presented. A six step process is explained with the help of examples. Two alternatives for gathering means and standard deviations for key parameters are discussed. First a DOE approach based on orthogonal arrays is presented. Second approach is based on Taylor Series expansion. An example of beam design is solved with both of these approaches. The Second example also considers the degradation with time in service.
Technical Paper

Managing System Effects of Traction Bars Implemented on a Hotchkiss Suspension

2005-11-01
2005-01-3624
This paper describes the implementation effort behind adding a pair of suspension links between the axle and frame of a light truck with a Hotchkiss-type suspension. These links, referred to as anti-windup bars (or traction bars), were introduced into an existing system to improve NVH performance; however, doing so required modifications to maintain other vehicle attributes, including vehicle safety and durability life. The authors address the management of these attributes and related design decisions for the components involved, focusing on the conflicting requirements involved. Physical vehicle testing, using design revisions recommended by Finite Element (FE) simulations, was performed to confirm component performance and related system behavior. Test results suggested improvements to the FE models that were required to more closely approximate the vehicle's behavior.
Technical Paper

CAE Approach for Light Truck Frame Durability Evaluation Due to Payload Increase

2004-11-16
2004-01-3411
The growing competition of the automotive market makes more and more necessary the reduction of development time and consequently, the increase of the capacity to quickly respond to the launching of the competitors. One of the most costly phases on the vehicle development process is the field durability test, both in function of the number of prototypes employed and the time needed to its execution. More and more diffused, the fatigue life prediction methods have played an important part in the durability analysis via CAE. Nevertheless, in order they can be reliable and really being able to reduce the development time and cost, they need to be provided with load cases that can accurately represent the field durability tests. This work presents a CAE approach used for light trucks in order to get a reasonable understanding of component durability behavior due to payload increase. In general, road load data is not available for a new payload condition.
Technical Paper

Magnetic Tape and Servo-Hydraulics Applied to Truck Frame Testing

1964-01-01
640119
This paper discusses the possible impact of the FM tape recorder and servo-hydraulic actuators on the testing of automotive structures. The use of tape recorders and automatic data reduction systems will permit more accurate definition of service conditions and properly “set-the-stage” for laboratory testing. Servo-hydraulic strokers should encourage better laboratory simulation because of their great flexibility. Test set-up time is reduced, fixtures can be simplified and load control is more precise. Simultaneous multiple inputs can be controlled as to amplitude and phase relationships.
Technical Paper

Aerostar Powertrain and Chassis Isolation Technology

1984-11-01
841695
The unitized construction Aerostar compact van and wagon models have been engineered to meet a variety of consumer transportation needs. The broad range of functional and image objectives have been attained by traditional design and development programs augmented by new developmental methods and isolation components. State-of-the-art development methodologies applied early in the Aerostar program enabled prediction of the effects of design revisions intended to improve subsystem response characteristics and isolation. Developmental methods used included finite element analysis, modal analysis and synthesis, transmissibility measurements, torsional powertrain measurements, continuous wave laser holography, acoustical mode determination, acoustical intensity mapping and sensitivity studies used to project production ranges of quality.
X