Refine Your Search

Topic

Search Results

Technical Paper

The effects of contamination on commercial trucks rear suspension springs durability

2020-01-13
2019-36-0083
On current competitive scenario for road load transportation in Brazilian market, the operational costs should be reduced as much as possible. The suspension system commonly used on road commercial trucks is based on leaf spring use and Hotchkiss concept for axle locating devices. The use of leaf springs without bolt attachment eyelets are still common for rear suspension systems. When using the leaf spring with direct contact to the brackets, wear plates are placed between them to work as wear elements due to the friction between the parts. The friction will cause wear on the parts, and the wear plate is designed to suffer the damages of this friction instead of the leaf spring, being the cheapest element and can be easily replaced. When the system works on a severe contamination environment with high levels of grit and dirt, the degradation of the parts are accelerated.
Technical Paper

Commercial vehicle pedal feeling comfort ranges definition

2020-01-13
2019-36-0016
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Mass Optimization of a Front Floor Reinforcement

2020-01-13
2019-36-0149
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing.
Technical Paper

Pickups Vehicle Dynamics: Ride and Skate

2003-11-18
2003-01-3588
The driver judges his vehicle based on subjective aspects. Vehicle dynamics characteristics including ride and handling have a major impact on this evaluation. For this reason, vehicle manufactures have grown investments in order to improve vehicle dynamics behavior. Subjective evaluation and customer satisfaction research show which dynamic characteristics need to be improved. CAE models, after being validated based on experimental measures, give a good insight on vehicle dynamic behavior and guide change proposals. At end, new subjective evaluations and measures are carried out in order to check the real improvement of CAE proposals. This work shows the use of the described methodology for a pickup vehicle dynamics evaluation. One of the major complains of pickup drives is related to ride quality. Thinking of that feature the evaluation process considers several phenomena, such as abruptness, front topping, front bottoming, head toss and rear aftershake.
Technical Paper

Development of Pneumatic Suspension Type Full Air for Commercial Vehicles

2016-05-11
2016-36-0069
The air suspension development and application has becoming increasingly applied also in commercial vehicles, offering to the driver more dynamic comfort as well as contributing to the reduction of impact loads on highways. Through this project pursuit show the analysis and application of an air suspension system for commercial tractor vehicles application. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension′s stiffness under different conditions of usage, laden and unladen. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain the vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions. For entire development were also used quality tools, considering the possible failure modes and effects as well as virtual simulation tools (Adams) and bench validations.
Technical Paper

Brake System Regulations and Standards Review and Comparison Focused on Europe, NA and SA Markets

2017-09-17
2017-01-2534
Considering that the most part of commercial vehicles are equipped with air brakes it is very important assure specific technical requirements for air brake system and its components. In addition, the effects of brake system failure are more critical for commercial vehicles which require more attention on their requirements details. Historically, the development of air brakes technology started on North America and Europe and consequently two strong and distinct resolutions were structured: FMVSS 121 and ECE R.13, respectively. For passenger cars were developed the ECER.13H to harmonize North American and European resolutions. However, for commercial vehicles regional applications, culture and implementation time must be considered. These commercial vehicles peculiarities must be understood and their specific requirements harmonized to attend the global marketing growth.
Technical Paper

Methodology of Automatic Slack Brake Adjuster Definition Considering Foundation Brake System Characteristics

2017-05-24
2017-36-0004
S-cam brakes concept are largely used by commercial vehicles around the world due to its low cost, easy maintenance and robustness. An important component of s-cam brakes is the slack adjuster, that is responsible for amplify brake chamber forces and assure correct lining and drum clearance. Therefore usually slack adjuster mechanism characteristics are defined only by empiric method considering trial and error tentative. This paper aims to demonstrate a methodology created to develop new air s-cam brakes slack adjuster definition taken in consideration its interface with other brake components. During this study was identified design specification for each component and its influence on adjustment process. It was verified the intrinsic characteristics of slack adjuster mechanism and developed a calculation tool to predict its actuation on the brake. The interface of slack adjuster with other foundation brake components and drum compliance were also studied.
Technical Paper

Development of a Commercial Truck Parabolic Leaf Spring Using CAE Simulation with Correlated Experimental Stress Analysis Results

2017-11-07
2017-36-0126
The development costs that new design requires are subject to everyday discussions and saving opportunities are mandatory. Using CAE to predict design changes can avoid excessive costs with prototypes parts, considering the high reliability those current mathematical models can provide. This paper presents the methodology used during the development of a parabolic leaf spring for the rear suspension of a commercial truck, considering mainly the parabolic profiles and stress distribution on the leaves, calculated using CAE software (ANSYS) and experimental tests to measure the actual stress on each leaf, certifying the correlation between computational calculations and real stress on the parts during bench and vehicle evaluations.
Technical Paper

Development of Full Air Pneumatic Suspension Type for Commercial Vehicles

2017-03-28
2017-01-1490
The air suspension development and its applications have becoming increasingly relevant for commercial vehicles to provide dynamic ride comfort to driver and reduce the load impact onto driver and or cargo. This paper shows the analysis and application of an air suspension system for commercial tractor vehicles and its dynamic influence. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension´s stiffness under different conditions of usage, laden and unladed. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions.
Technical Paper

Managing System Effects of Traction Bars Implemented on a Hotchkiss Suspension

2005-11-01
2005-01-3624
This paper describes the implementation effort behind adding a pair of suspension links between the axle and frame of a light truck with a Hotchkiss-type suspension. These links, referred to as anti-windup bars (or traction bars), were introduced into an existing system to improve NVH performance; however, doing so required modifications to maintain other vehicle attributes, including vehicle safety and durability life. The authors address the management of these attributes and related design decisions for the components involved, focusing on the conflicting requirements involved. Physical vehicle testing, using design revisions recommended by Finite Element (FE) simulations, was performed to confirm component performance and related system behavior. Test results suggested improvements to the FE models that were required to more closely approximate the vehicle's behavior.
Technical Paper

One Piece Stamped I-Beam Axle

1980-11-01
801425
Recent accomplishments, made possible by advances in manufacturing and material technology, have led to the development of a one-piece stamped I-Beam axle with ball joints as a replacemet to the forged axle with king pin design. The new stamped I-Beam axle brings with it a number of improvements to Ford's Twin I-Beam suspension system. This paper describes the objectives, improvements, evolution of the design, testing, and the manufacturing process for this latest suspension system improvement on Ford light trucks.
Technical Paper

Evolution of the New Ford Aerostar Impact Extruded Aluminum Wheel

1984-11-01
841694
Ford's continued effort to improve fuel economy in automotive applications has emphasized the need for lightweight components that retain all the toughness associated with Ford truck vehicle characteristics. The application of an impact extrusion process to wheel design and manufacture, for Ford Aerostar, provides strength, performance and style more efficiently than other traditional processes. It results in a valuable 33% weight saving over comparable HSLA steel wheels, and provides the customer with uncompromised value. The Ford Aerostar Impact Extruded Aluminum Wheel was designed to be of one-piece construction, manufactured from a less than 1″ thick aluminum wafer-shaped blank. The process permits manufacture in half the steps of a conventional stamped steel wheel, and eliminates extensive machining required with forged or cast aluminum wheels.
Journal Article

Cruise Controller with Fuel Optimization Based on Adaptive Nonlinear Predictive Control

2016-04-05
2016-01-0155
Automotive cruise control systems are used to automatically maintain the speed of a vehicle at a desired speed set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods. The objective of this paper is to validate an Adaptive Nonlinear Model Predictive Controller (ANLMPC) implemented in a vehicle equiped with standard production Powertrain Control Module (PCM). Application and analysis of Model Predictive Control utilizing road grade preview information has been reported by many authors, namely for commercial vehicles. The authors reported simulations and application of linear and nonlinear MPC based on models with fixed parameters, which may lead to inaccurate results in the real world driving conditions. The significant noise factors are namely vehicle mass, actual weather conditions, fuel type, etc.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

Brake Pedal Feeling Comfort Analysis for Trucks with Pneumatic Brake System

2019-09-15
2019-01-2140
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Application of the Power-Based Fuel Consumption Model to Commercial Vehicles

2021-04-06
2021-01-0570
Fuel power consumption for light duty vehicles has previously been shown to be proportional to vehicle traction power, with an offset for overhead and accessory losses. This allows the fuel consumption for an individual powertrain to be projected across different vehicles, missions, and drive cycles. This work applies the power-based model to commercial vehicles and demonstrates its usefulness for projecting fuel consumption on both regulatory and customer use cycles. The ability to project fuel consumption to different missions is particularly useful for commercial vehicles, as they are used in a wide range of applications and with customized designs. Specific cases are investigated for Light and Medium Heavy- Duty work trucks. The average power required by a vehicle to drive the regulatory cycles varies by nearly a factor 10 between the Class 4 vehicle on the ARB Transient cycle and the loaded Class 7 vehicle at 65 mph on grade.
Technical Paper

Lubricant Oil Service Interval Strategy for PROCONVE P7 Diesel Commercial Vehicles

2014-09-30
2014-36-0166
This paper describes the strategy of lubricant oil service interval for commercial truck based on new engine technology (PROCONVE P7), the fleet owner's needs, vehicle typical application route, operational costs related to oil change, design of oil pan to adequate the oil volume and lubricant oil available technology. In result, this analysis shows the best annual operational cost for customer in terms of oil change.
Technical Paper

Brakes Standards Interface Analysis Considering Brazilian, European and North American Regulations Focusing on Technologies Introduction

2015-05-13
2015-36-0027
It is very important and unquestionable that we need to have a clear technical requirement for Air Brake Systems and its components, since it is one of most important regarding safety. Looking to heavy commercial vehicles and possible air brake system failures, everything becomes clearly to pay total attention for these normative and regulatory requirements. Historically, the development of Brakes technology has started on EUA and Europe and consequently two strong and distinct requirements were structured: FMVSS 121 and ECE-R13. From decades people are trying to harmonize these requirements and for passenger cars, the evolution was faster. However, for commercial vehicles there are more peculiarities considering regional applications and some of them cultural and implementation time. As globally market is growing so fast as well new markets around the world, become fundamental the clearly understanding of these similarities, variants, peculiarities and correlated requirements.
X