Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

Integrating New Emissions Engines into Commercial Vehicles:Emissions, Performance & Affordability

2006-10-31
2006-01-3545
Commercial vehicles carry more than 10 billion tons of goods - approximately 70 percent of all freight shipped and travel over 450 billion miles each year in the United States. These vehicles are the exclusive mode of delivery in over 75 percent of U.S. communities. Such utilization and dependency demand commercial vehicles be reliable, durable, and cost effective. The heart of these commercial vehicles (Classes 3-8) is the diesel engine. The widespread use of the diesel engine can be attributed to its reliability, durability, and cost effectiveness. However, the 2007 and 2010 EPA emissions regulations are creating significant challenges for diesel-powered commercial vehicles. Engine and vehicle manufacturers must strike a balance between emissions, performance, and affordability. A consequence of the evolution of the diesel engine to meet the increasingly stringent emissions regulations is that more effort to accommodate the associated changes is driven to the vehicle manufacturers.
Technical Paper

Compact Post-Aftertreatment Temperature Control Device for Exhaust Gas Cooling

2007-10-30
2007-01-4199
This paper presents a compact temperature control device to cool down hot exhaust gas coming out of an aftertreatment emission control system. Active DPF (Diesel Particulate Filter) regeneration is required for aftertreatment emission controls to meet the 2007 EPA (Environmental Protection Agency) PM(Particulate Matter) standard. However, regeneration of the DPF temporarily elevates temperatures in the filter to eliminate accumulated soot. This can increase the temperature of the exhaust gas. The temperature control device in this paper draws ambient air into the hot exhaust stream and mixes them together in such a fashion to maximize temperature drop and minimize back pressure for a limited space without any moving parts or supply of extra power. The simple and compact design of the device makes it a cost-effective candidate to retrofit to an existing aftertreatment system.
Technical Paper

Object Oriented Design Approach to Systems Engineering of a Mechanical Steering System

2003-11-10
2003-01-3399
The successful development of new products is contingent on clearly understanding product requirements and defining appropriate design activities to deliver the right product. Even if one can clearly understand the abstract requirements implied by the voice-of-customer (VOC), engineers still work best to a set of specifications that define the product in objective measures. The task of extracting the systems specifications from text versions of product requirements is not trivial. Full order dynamic models of mass, springs and dampers provide understanding of vehicle performance; however, the engineer has to define the dynamic characteristics based on his understanding of requirements and translate them into technical specifications. The result can be too dependent on human assumptions and judgments at this point. This work was done to understand how to apply Object Oriented Design (OOD) methodology to trace requirements of a mechanical system to design parameters.
Technical Paper

Simulation of the Flow-Field Around a Generic Tractor-Trailer Truck

2004-03-08
2004-01-1147
In the present work computational fluid dynamics (CFD) simulations of the flow field around a generic tractor-trailer truck are presented and compared with corresponding experimental measurements. A generic truck model was considered which is a detailed 1/8th scale replica of a Class-8 tractor-trailer truck. It contained a number of details such as bumpers, underbody, tractor chassis, wheels, and axles. CFD simulations were conducted with wind incident on the vehicle at 0 and 6 degree yaw. Two different meshing strategies (tet-dominant and hex-dominant) and three different turbulence models (Realizable k-ε, RNG k-ε, and DES) are considered. In the first meshing strategy an unstructured tetrahedral mesh was created over a large region surrounding the vehicle and in its wake. In the second strategy the mesh was predominantly hexahedral except for a few narrow regions around the front end and the underbody which were meshed with tetrahedral cells owing to complex topology.
Technical Paper

Droplet Deformation and Rotation Model of Fuel Spray in Diesel Engines

2001-11-12
2001-01-2723
A droplet deformation and rotation model (DDR) has been developed and implemented in the KIVA II CFD code for better describing characteristics of liquid fuel sprays in diesel engines, including the distribution of sprays in combustion chamber space and the spray/wall impingement. The DDR model accounts for the effects of both the droplet's frontal area and its drag coefficient as a function of its deformation and rotation on droplet drag and droplet breakup. Therefore, the DDR model can be used for calculating the fuel droplet's drag and breakup in the process of combustion in diesel engines. This makes it possible to model the highly distorted droplet's frontal area variation and its effect on the drag coefficient in sprays. The new version of the KIVA II code with the DDR model has been tested for a case of the spray/wall impingement and a case of the combustion process in a diesel engine.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

Systems Engineering Approach for Vehicle Specification

2002-11-18
2002-01-3087
This paper discusses a practical use of the Systems Engineering Process as it is implemented in a Truck OEM. The process presented is focused on the Electrical and Electronics area, but can be applied to other systems on the vehicle and to the vehicle level requirements. Systems Engineering rationale is summarized based upon historical impacts and the application of Systems Engineering to address those impacts. Prior System Development Processes are reviewed in light of modern Systems Engineering approaches, leading to the synthesis of the Systems Engineering Documentation Set for the Vehicle and the Vehicle's Electrical and Electronic Systems. The analysis for this approach looks at the application of Systems Engineering Principles throughout the lifecycle of the vehicle, going beyond the boundaries of traditional requirements gathering and analysis.
Technical Paper

Physical to Functional Mapping with Mindmap Software

2006-10-31
2006-01-3493
This paper describes how mind mapping software can help to visualize: System performance requirements Product attributes that satisfy performance requirements Mapping between performance requirements and product attributes An example is given using a partial model for vehicle performance developed by the International Truck and Engine Corporation. The mind map software used in this study is Mind Manager Pro version 6 by Mindjet. Anecdotal evidence is offered for the benefits and challenges of implementing a visual Mind Map scheme; however, the judgment of overall effectiveness is left to the reader.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Systems Engineering Efforts - What, When and How Much?

2004-10-26
2004-01-2615
This paper describes the electrical system development for the headlight feature in an International High Performance Vehicle. Systems engineers developed several iterations of functional requirements, functional block diagrams, state diagrams, and body controller software requirements early in the development cycle at considerable engineering expense. The hardware design team found the functional block diagrams useful, however the software design team did not find the other artifacts useful. The software design teams chose to implement a design that was very similar to a current product offering and did not map to the system proposed by the systems engineering team. This paper provides examples of the Systems Engineering artifacts and shows when they were developed in the project timeline.
Technical Paper

A Computational and Experimental Analysis of the Flow Around a Blunt-Base Vehicle

2005-11-01
2005-01-3626
This paper describes the results of experiments that were performed using a Ground Research Vehicle (GRV) at the National Aeronautics and Space Administration's (NASA) Dryden Flight Research Center in Edwards, CA and a comparison with computational results. The GRV is a modified 1984 General Motors (GMC) van and measures 40 feet long and 9 feet high, with a base area of 83 by 83, and it weighs 10260 lbs and holds a crew of up to three. Air data is measured from a nose-boom, 2 global positioning (GPS) units, and an absolute Honeywell Pressure Transducer with 4 Electronic Signal Processor (ESP) scanners and 64 surface pressure ports. This allows for detailed measurements of the surface pressure profiles around the vehicle. The total vehicle drag is estimated from coast-down tests, while the pressure component of the drag force may be calculated by integrating the pressure profiles on the front and base of the vehicle.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

Summary and Characteristics of Rotating Machinery Digital Signal Processing Methods

1999-09-14
1999-01-2818
Several very different order tracking and analysis techniques for rotating equipment have been developed recently that are available in commercial noise and vibrations software packages. Each of these order tracking methods has distinct trade-offs for many common applications and very specific advantages for special applications in sound quality or noise and vibrations troubleshooting. The Kalman, Vold-Kalman, Computed Order Tracking, and the Time Variant Discrete Fourier Transform as well as common FFT based order analysis methods will all be presented. The strengths and weaknesses of each of the methods will be presented as well as the highlights of their mathematical properties. This paper is intended to be an overview of currently available technology with all methods presented in a common format that allows easy comparison of their properties. Several analytical examples will be presented to thoroughly document each methods' behavior with different types of data.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Start of Injection and Spark Timing Effects

2015-09-29
2015-01-2813
The increased availability of natural gas (NG) in the United States (US), and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim is to realize fuel cost savings and reduce harmful emissions, while maintaining durability. This is a potential path to help the US reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe; however, this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Control-Oriented Modeling of a Vehicle Drivetrain for Shuffle and Clunk Mitigation

2019-04-02
2019-01-0345
Flexibility and backlash of vehicle drivelines typically cause unwanted oscillations and noise, known as shuffle and clunk, during tip-in and tip-out events. Computationally efficient and accurate driveline models are necessary for the design and evaluation of torque shaping strategies to mitigate this shuffle and clunk. To accomplish these goals, this paper develops a full-order physics-based model and uses this model to develop a reduced-order model (ROM), which captures the main dynamics that influence the shuffle and clunk phenomena. The full-order model (FOM) comprises several components, including the engine as a torque generator, backlash elements as discontinuities, and propeller and axle shafts as compliant elements. This model is experimentally validated using the data collected from a Ford vehicle. The validation results indicate less than 1% error between the model and measured shuffle oscillation frequencies.
Technical Paper

Directional Emissions Predictions of NOx and Soot of a Diesel ICE via Numerical Simulation

2015-09-29
2015-01-2880
The use of numerical simulations in the development processes of engineering products has been more frequent, since it enables prediction of premature failures and study of new promising concepts. In industry, numerical simulation has the function of reducing the necessary number of validation tests prior to spending resources on alternatives with lower likelihood of success. The internal combustion Diesel engine plays an important role in Brazil, since they are used extensively in automotive applications and commercial cargo transportation, mainly due to their relevant advantage in fuel consumption and reliability. In this case, the most critical pollutants are oxides of nitrogen (NOx) and particulate matter (PM) or soot. The reduction of their levels without affecting the engine performance is not a simple task. This paper presents a methodology for guiding the combustion analysis by the prediction of NOx emissions and soot using numerical simulation.
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
X