Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Comparison of the Lift-Off Lengths Obtained by Simultaneous OH-LIF and OH* Chemiluminescence Imaging in an Optical Heavy-Duty Diesel Engine

The presence of OH radicals as a marker of the high temperature reaction region usually has been used to determine the lift-off length (LOL) in diesel engines. Both OH Laser Induced Fluorescence (LIF) and OH* chemiluminescence diagnostics have been widely used in optical engines for measuring the LOL. OH* chemiluminescence is radiation from OH being formed in the exited states (OH*). As a consequence OH* chemiluminescence imaging provides line-of-sight information across the imaged volume. In contrast, OH-LIF provides information on the distribution of radicals present in the energy ground state. The OH-LIF images only show OH distribution in the thin cross-section illuminated by the laser. When both these techniques have been applied in earlier work, it has often been reported that the chemiluminescence measurements result in shorter lift-off lengths than the LIF approach.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine: Effects of Swirl and Jet-Jet Interactions

The influence of jet-flow and jet-jet interactions on the lift-off length of diesel jets are investigated in an optically accessible heavy-duty diesel engine. High-speed OH chemiluminescence imaging technique is employed to capture the transient evolution of the lift-off length up to its stabilization. The engine is operated at 1200 rpm and at a constant load of 5 bar IMEP. Decreasing the inter-jet spacing shortens the liftoff length of the jet. A strong interaction is also observed between the bulk in-cylinder gas temperature and the inter-jet spacing. The in-cylinder swirl level only has a limited influence on the final lift-off length position. Increasing the inter-jet spacing is found to reduce the magnitude of the cycle-to-cycle variations of the lift-off length.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine

High-speed OH chemiluminescence imaging is used to measure the lift-off length of diesel sprays in an optical heavy-duty diesel engine of 2 L displacement operated at 1200 rpm and 5 bar IMEP. Stereoscopic images are acquired at two different wavelengths (310 and 330 nm). Subtraction of pairwise images helps reducing the background coming from natural soot incandescence in the OH chemiluminescence images. Intake air temperature (343 to 403 K), motored top dead center density (18 to 22 kg/m3), fuel injection pressure (150 to 250 MPa), intake oxygen concentration (17 to 21 %vol) and nozzle diameter (0.1 and 0.14 mm) are varied and a nonlinear regression model is derived from the experimental results to describe stabilized lift-off length as function of the experimental factors. The lift-off length follows the general trends that are known from spray vessel investigations, but the strength of the dependence on certain variables deviates strongly from those studies.