Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Journal Article

An Experimental Investigation of Low-Soot and Soot-Free Combustion Strategies in a Heavy-Duty, Single-Cylinder, Direct-Injection, Optical Diesel Engine

2011-08-30
2011-01-1812
High-efficiency, clean-combustion strategies for heavy-duty diesel engines are critical for meeting stringent emissions regulations and reducing the costs of aftertreatment systems that are currently required to meet these regulations. Results from previous constant-volume combustion-vessel experiments using a single jet of fuel under quiescent conditions have shown that mixing-controlled soot-free combustion (i.e., combustion where soot is not produced) is possible with #2 diesel fuel. These experiments employed small injector-orifice diameters (≺ 150 μm) and high fuel-injection pressures (≻ 200 MPa) at top-dead-center (TDC) temperatures and densities that could be achievable in modern heavy-duty diesel engines.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

Caterpillar’s Autonomous Journey - The Argument for Autonomy

2016-09-27
2016-01-8005
Today’s business climate and economy demand new, innovative strategies from the initial kickoff of research and development - to the mining of ore from the earth - to the final inspection of a finished product in a mid-western factory. From startup companies with two employees to the largest companies, the world faces new and challenging requirements every day. The demands from companies, customers, executives, and shareholders continue to drive for higher outputs with more efficient use of personnel and investments. Fortunately, the rate of technology continues to exponentially accelerate, which allows those at the cutting edge of technology to capitalize. Caterpillar has been a pioneer in advanced technology since its inception and has been developing the foundation for autonomy over the past four decades.
Technical Paper

Potentials of Electrical Assist and Variable Geometry Turbocharging System for Heavy-Duty Diesel Engine Downsizing

2017-03-28
2017-01-1035
Diesel engine downsizing aimed at reducing fuel consumption while meeting stringent exhaust emissions regulations is currently in high demand. The boost system architecture plays an essential role in providing adequate air flow rate for diesel fuel combustion while avoiding impaired transient response of the downsized engine. Electric Turbocharger Assist (ETA) technology integrates an electric motor/generator with the turbocharger to provide electrical power to assist compressor work or to electrically recover excess turbine power. Additionally, a variable geometry turbine (VGT) is able to bring an extra degree of freedom for the boost system optimization. The electrically-assisted turbocharger, coupled with VGT, provides an illuminating opportunity to increase the diesel engine power density and enhance the downsized engine transient response. This paper assesses the potential benefits of the electrically-assisted turbocharger with VGT to enable heavy-duty diesel engine downsizing.
Technical Paper

Application of an Elastomeric Tuned Mass Damper for Booming Noise on an Off-highway Machine

2013-05-13
2013-01-2010
NVH is gaining importance in the quality perception of off-highway machine performance and operator comfort. Booming noise, a low frequency NVH phenomenon, can be a significant sound issue in an off-highway machine. In order to increase operator comfort by decreasing the noise levels and noise annoyance, a tuned mass damper (TMD) was added to the resonating panel to suppress the booming. Operational deflection shapes (ODS) and experimental modal analysis (EMA) were performed to identify the resonating panels, a damper was tuned in the lab and on the machine to the specific frequency, machine operational tests were carried out to verify the effectiveness of the damper to deal with booming noise.
Technical Paper

Cost Reduction Challenges and Emission Solutions in Emerging Markets for the Automotive Industry

2013-09-24
2013-01-2441
The growth of auto sales in emerging markets provides a good opportunity for automakers. Cost is a key factor for any automaker to win in an emerging market. This paper analyzes risks and opportunities in a low cost manufacturing environment. The Chinese auto market is used as an example and three categories of risks are analyzed. A typical risk assessment for cost reduction includes the analysis of environment risks, process risks and strategic risks associated with all phases of a product life. In an emerging market, emission regulations are a rapidly-evolving environment variable, since most countries with less regulated emission codes try to catch up with the newly- developed technologies to meet sustainable growth targets. Emission regulations have a huge impact on product design, manufacturing and maintenance in the automotive industry, and hence the related cost reduction must be thoroughly analyzed during risk assessment.
Technical Paper

Performance and Emission Results from a Heavy-Duty Diesel Engine with Ducted Fuel Injection

2021-04-06
2021-01-0503
Ducted fuel injection (DFI) was tested for the first time in a heavy-duty diesel metal engine. It was implemented on a Caterpillar 2.5-liter single-cylinder heavy-duty diesel engine fitted with a common rail fuel system and a Tier 4 final production piston. Engine tests consisted of single-injection timing sweeps at A100 and C100, where rail pressure and exhaust gas recirculation (EGR) were also varied. A 6-hole fuel injector tip with 205 am orifices was used with a 130° spray angle and rail pressures up to 250 MPa. The ducts were 14 mm long, had a 2.5 mm inner diameter, and were placed 3.8 mm away from the orifice exits. The ducts were attached to a base, which in turn was attached to the cylinder head with bolts. Furthermore, alignment of the ducts and their corresponding fuel jets was accomplished.
Technical Paper

A Hybrid Heavy-Duty Diesel Power System for Off-Road Applications - Concept Definition

2021-04-06
2021-01-0449
A multi-year Power System R&D project was initiated with the objective of developing an off-road hybrid heavy-duty concept diesel engine with front end accessory drive-integrated energy storage. This off-road hybrid engine system is expected to deliver 15-20% reduction in fuel consumption over current Tier 4 Final-based diesel engines and consists of a downsized heavy-duty diesel engine containing advanced combustion technologies, capable of elevated peak cylinder pressures and thermal efficiencies, exhaust waste heat recovery via SuperTurbo™ turbocompounding, and hybrid energy recovery through both mechanical (high speed flywheel) and electrical systems. The first year of this project focused on the definition of the hybrid elements using extensive dynamic system simulation over transient work cycles, with hybrid supervisory controls development focusing on energy recovery and transient load assist, in Caterpillar’s DYNASTY™ software environment.
Technical Paper

The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration

2014-09-30
2014-01-2367
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
Technical Paper

Using a Statistical Machine Learning Tool for Diesel Engine Air Path Calibration

2014-09-30
2014-01-2391
A full calibration exercise of a diesel engine air path can take months to complete (depending on the number of variables). Model-based calibration approach can speed up the calibration process significantly. This paper discusses the overall calibration process of the air-path of the Cat® C7.1 engine using statistical machine learning tool. The standard Cat® C7.1 engine's twin-stage turbocharger was replaced by a VTG (Variable Turbine Geometry) as part of an evaluation of a novel air system. The changes made to the air-path system required a recalculation of the air path's boost set point and desired EGR set point maps. Statistical learning processes provided a firm basis to model and optimize the air path set point maps and allowed a healthy balance to be struck between the resources required for the exercise and the resulting data quality.
Technical Paper

Directional Emissions Predictions of NOx and Soot of a Diesel ICE via Numerical Simulation

2015-09-29
2015-01-2880
The use of numerical simulations in the development processes of engineering products has been more frequent, since it enables prediction of premature failures and study of new promising concepts. In industry, numerical simulation has the function of reducing the necessary number of validation tests prior to spending resources on alternatives with lower likelihood of success. The internal combustion Diesel engine plays an important role in Brazil, since they are used extensively in automotive applications and commercial cargo transportation, mainly due to their relevant advantage in fuel consumption and reliability. In this case, the most critical pollutants are oxides of nitrogen (NOx) and particulate matter (PM) or soot. The reduction of their levels without affecting the engine performance is not a simple task. This paper presents a methodology for guiding the combustion analysis by the prediction of NOx emissions and soot using numerical simulation.
Journal Article

Investigation of the Relative Performance of Vaned and Vaneless Mixed Flow Turbines for Medium and Heavy-Duty Diesel Engine Applications with Pulse Exhaust Systems

2021-04-06
2021-01-0644
This paper details results of a numerical and experimental investigation into the relative performance of vaned and vaneless mixed flow turbines for application to medium and heavy-duty diesel engines utilizing pulse exhaust systems. Previous investigations into the impact of nozzle vanes on turbine performance considered only open turbine housings, whereas a majority of medium and heavy-duty diesel engine applications are six-cylinder engines using pulse exhaust systems with divided turbines. The two turbine stages for this investigation were carefully designed to meet the constraints of engines with pulse exhaust systems and to control confounding factors that would undermine the vaned vs vaneless performance comparison. Detailed CFD analysis and turbine dynamometer test results confirm a significant efficiency advantage for the vaned turbine stage under both full and partial admission conditions.
X