Refine Your Search

Topic

Author

Search Results

Journal Article

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

2014-09-30
2014-01-2326
Two hybrid powertrain configurations, including parallel and series hybrids, were simulated for fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving conditions. A comprehensive set of component models describing engine fuel consumption, emissions control, battery energy, and accessory power demand interactions was developed and integrated with the simulated hybrid trucks to identify heavy-duty (HD) hybrid technology barriers. The results show that series hybrid is absolutely negative for fuel-economy improvement of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical).
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Journal Article

Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

2013-04-08
2013-01-1033
We compare the simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional heavy duty (HD) truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential benefit for HD hybrid vehicles during highway driving.
Technical Paper

Variability Analysis of FMVSS-121 Air Brake Systems: 60-mi/hr Service Brake System Performance Data for Truck Tractors

2020-10-05
2020-01-1640
In support of the Federal Motor Carrier Safety Administration’s (FMCSA’s) ongoing interest in connected and automated commercial vehicles, this report summarizes analyses conducted to quantify variability in stopping distance tests conducted on commercial truck tractors. The data used were retrieved from tests performed under the controlled conditions specified for FMVSS-121 air brake system compliance testing. The report explores factors affecting the variability of the service brake stopping distance as defined by 49 CFR 571.121, S5.3.1 Stopping Distance—trucks and buses stopping distance. Variables examined in this analysis include brake type, weight, wheelbase, and tractor antilock braking system (ABS). This analysis uses existing test data collected between 2010 and 2019. Several of the examined parameters affected both tractor stopping distance and stopping distance variability.
Technical Paper

Real-Time Dynamic Brake Assessment for Heavy Commercial Vehicle Safety

2020-10-05
2020-01-1646
This paper summarizes initial results and findings of a model developed to determine the braking performance of commercial motor vehicles in motion regardless of brake type or gross weight. Real-world data collected by Oak Ridge National Laboratory for a U.S. Department of Energy study was used to validate the model. Expanding on previous proof-of-concept research showing the linear relationship of brake application pressure and deceleration additional parameters such as elevation were added to the model. Outputs from the model consist of coefficients calculated for every constant pressure braking event from a vehicle that can be used to calculate a deceleration and thus compute a stopping distance for a given scenario. Using brake application pressure profiles derived from the dataset, stopping distances for light and heavy loads of the same vehicle were compared for various speed and road grades.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Technical Paper

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

2001-05-14
2001-01-2061
The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

2017-03-28
2017-01-1000
Greenhouse gas regulations and global economic growth are expected to drive a future demand shift towards diesel fuel in the transportation sector. This may create a market opportunity for cost-effective fuels in the light distillate range if they can be burned as efficiently and cleanly as diesel fuel. In this study, the emission performance of a low cetane number, low research octane number naphtha (CN 34, RON 56) was examined on a production 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using only production hardware, both the engine-out and tailpipe emissions were examined during the heavy-duty emission testing cycles using naphtha and ultra-low-sulfur diesel (ULSD) fuels. Without any modifications to the hardware and software, the tailpipe emissions were comparable when using either naphtha or ULSD on the heavy duty test cycles.
Technical Paper

A Systems Approach to Life Cycle Truck Cost Estimation

2006-10-31
2006-01-3562
A systems-level modeling framework developed to estimate the life cycle cost of medium- and heavy-duty trucks is discussed in this paper. Costs are estimated at a resolution of five major subsystems and 30+ subsystems, each representing a specific manufacturing technology. Interrelationships among various subsystems affecting cost are accounted for. Results of a specific Class 8 truck are finally discussed to demonstrate the modeling framework's capability, including the analysis of cost-effectiveness of some of the competing alternative system design options being considered by the industry today.
Technical Paper

High Performance NH3 SCR Zeolite Catalysts for Treatment of NOx in Emissions from Off-Road Diesel Engine

2011-04-12
2011-01-1330
The leading approach for reduction of NOx from diesel engines is selective catalytic reduction employing urea as a reductant (NH₃- or urea-SCR). For passenger vehicles, the best known NH₃-SCR catalysts are Cu-ZSM-5 and Fe-ZSM-5 and have been shown to function very well in a narrow temperature range. This technology is not directly transferable to off-road diesel engines which operate under a different duty cycle resulting in exhaust with different fractions of components than are present in passenger vehicle emissions. Our results show that Cu-ZSM-5 exhibits 90% NOx reduction efficiency in 250-450°C range while Fe-ZSM-5 is highly effective in 350-550°C range for off-road engines. However, a combination of these catalysts cannot efficiently reduce NOx in 150-650°C which is the desirable range for deployment in off-road diesel engines. In our efforts to increase the effective range of these catalysts, we initiated efforts to modify these catalysts by catalyst promoters.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

A Computational and Experimental Analysis of the Flow Around a Blunt-Base Vehicle

2005-11-01
2005-01-3626
This paper describes the results of experiments that were performed using a Ground Research Vehicle (GRV) at the National Aeronautics and Space Administration's (NASA) Dryden Flight Research Center in Edwards, CA and a comparison with computational results. The GRV is a modified 1984 General Motors (GMC) van and measures 40 feet long and 9 feet high, with a base area of 83 by 83, and it weighs 10260 lbs and holds a crew of up to three. Air data is measured from a nose-boom, 2 global positioning (GPS) units, and an absolute Honeywell Pressure Transducer with 4 Electronic Signal Processor (ESP) scanners and 64 surface pressure ports. This allows for detailed measurements of the surface pressure profiles around the vehicle. The total vehicle drag is estimated from coast-down tests, while the pressure component of the drag force may be calculated by integrating the pressure profiles on the front and base of the vehicle.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

A Vector Approach to Regression Analysis and Its Application to Heavy-Duty Diesel Emissions

2000-06-19
2000-01-1961
An alternative approach is presented for the regression of response data on predictor variables that are not logically or physically separable. The methodology is demonstrated by its application to a data set of heavy-duty diesel emissions. Because of the covariance of fuel properties, it is found advantageous to redefine the predictor variables as vectors, in which the original fuel properties are components, rather than as scalars each involving only a single fuel property. The fuel property vectors are defined in such a way that they are mathematically independent and statistically uncorrelated. The available data set is not considered adequate for the development of a full-fledged emission model. Nevertheless, the data clearly show that only a few basic patterns of fuel-property variation affect emissions and that the number of these patterns is considerably less than the number of variables initially thought to be involved.
Technical Paper

Heavy Vehicle Propulsion Materials Program

1999-04-28
1999-01-2254
The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future.
Technical Paper

Summary and Characteristics of Rotating Machinery Digital Signal Processing Methods

1999-09-14
1999-01-2818
Several very different order tracking and analysis techniques for rotating equipment have been developed recently that are available in commercial noise and vibrations software packages. Each of these order tracking methods has distinct trade-offs for many common applications and very specific advantages for special applications in sound quality or noise and vibrations troubleshooting. The Kalman, Vold-Kalman, Computed Order Tracking, and the Time Variant Discrete Fourier Transform as well as common FFT based order analysis methods will all be presented. The strengths and weaknesses of each of the methods will be presented as well as the highlights of their mathematical properties. This paper is intended to be an overview of currently available technology with all methods presented in a common format that allows easy comparison of their properties. Several analytical examples will be presented to thoroughly document each methods' behavior with different types of data.
Technical Paper

Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range Fuels

2019-04-02
2019-01-1185
In this study, the compression ratio of a commercial 15L heavy-duty diesel engine was lowered and a split injection strategy was developed to promote partially premixed compression ignition (PPCI) combustion. Various low reactivity gasoline-range fuels were compared with ultra-low-sulfur diesel fuel (ULSD) for steady-state engine performance and emissions. Specially, particulate matter (PM) emissions were examined for their mass, size and number concentrations, and further characterized by organic/elemental carbon analysis, chemical speciation and thermogravimetric analysis. As more fuel-efficient PPCI combustion was promoted, a slight reduction in fuel consumption was observed for all gasoline-range fuels, which also had higher heating values than ULSD. Since mixing-controlled combustion dominated the latter part of the combustion process, hydrocarbon (HC) and carbon monoxide (CO) emissions were only slightly increased with the gasoline-range fuels.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
X