Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Soil Compaction of Four-Wheel Drive and Tracked Tractors Under Various Draft Loads

1995-09-01
952098
The soil response to traffic loads as affected by tire inflation pressure, track width and drawbar pull was measured. The change in soil physical properties caused by a John Deere 8870 tractor at two tire pressure settings and CATERPILLAR Challenger 65 and 75 tractors with 64 and 89 cm wide belt tracks, were measured at two load levels; no draft (tractor only) and tractor pulling a 12.5 m field cultivator. The Ohio State University Soil Physical Properties Measurement System was used to measure cone penetration resistance, air permeability, air-filled porosity, and bulk density. The results show the dual overinflated tires caused the greatest change, followed by the CATERPILLAR Challenger 65 track, then the CATERPILLAR Challenger 75 track, and finally dual correctly inflated tires caused the least effect on soil physical properties. These results were consistent at each depth. The effects of the two draft levels give the same ranking of the tractive units.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
X