Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design and Development of Single Seat, Four Wheeled All-Terrain Vehicle for Baja Collegiate Design Series

There has been a rapid increase in popularity of multipurpose All-terrain vehicles (ATV) across the globe over the past few years. SAE BAJA event gives student-community an opportunity to delve deeper into the nitty-gritty of designing a single seat, four-wheeled off road vehicle. The design and development methodology presented in this paper is useful in conceptualization of an ATV for SAE BAJA event. The vehicle is divided into various subsystems including chassis, suspension, drive train, steering, and braking system. Further these subsystems are designed and comprehensively analyzed in software like SolidWorks, ANSYS, WINGEO and MS-Excel. The 3-D model of roll cage is designed in SolidWorks and analyzed in ANSYS 9.0 for front, rear and side impact along with front and side roll-over conditions. Special case of wheel bump is also analyzed. Weight, wall thickness and bending strength of tubing used for roll cage are comprehensively studied.
Technical Paper

Electrically Powered Hydraulic Steering Systems for Light Commercial Vehicles

Electrically Powered Hydraulic Steering (EPHS) was developed in the early 90s and previously applied to vehicle segments B and C (small and medium-sized passenger cars). Till now more than 10 million vehicles are in the field. The advantages consist of the well known power density coming along with the flexible package. Value is added due to the consequent development and usage of electronic control realized in compact physical units. As a result key features for chassis control systems like controllability, high dynamic performance, and low energy consumption are achieved while maintaining mature and robust hydraulic components. Recent market requirements in other segments, e.g. Sport Utility Vehicles (SUV) and Light Commercial Vehicles (LCV) require higher powered motor pump units and lead to the decision to develop products in this direction.
Technical Paper

Load Distribution-Specific Viscoelastic Characterization of the Hybrid III Chest

This paper presents a load distribution-specific viscoelastic structural characterization of the Hybrid III 50th percentile male anthropomorphic test dummy thorax. The dummy is positioned supine on a high-speed material testing machine and ramp-and-hold tests are performed using a distributed load, a hub load, and a diagonal belt load applied to the anterior thorax of the dummy. The force-deflection response is shown to be linear viscoelastic for all loading conditions when the internal dummy instrumentation is used to measure chest deflection. When an externally measured displacement (i.e., a measurement that includes the superficial skin material) is used for the characterization, a quasilinear viscoelastic characterization is necessary. Linear and quasilinear viscoelastic model coefficients are presented for all three loading conditions.
Technical Paper

Simulation of Occipitoatlantoaxial Injury Utilizing a MADYMO Model

Injuries of the Occipitoatlantoaxial (Occ-C2) region (also known as atlanto-occipital injuries) are the most common form of cervical injury in children aged ten years and younger. The crash studied in this paper is unique in that there were three children ages 3, 6 and 7 involved in a frontal crash with a delta V of 28mph with each child receiving a nonfatal Occ-C2 injury of varying degrees. The 3 and 6 year-old children were remarkably similar in height and weight to the 3 and 6 year-old Hybrid III ATD's. Also, unique to this case is the fact that the right rear 6 year-old occupant likely sustained an Occ-C2 injury prior to impact with the frame of the front passenger seat. This crash environment was recreated utilizing MADYMO occupant simulation software. The models for the Hybrid III 3 and 6 year-old ATDs were used to represent the occupants in this crash.
Journal Article

Mobility and Energy Efficiency Analysis of a Terrain Truck

While much research has focused on improving terrain mobility, energy and fuel efficiency of terrain trucks, only a limited amount of investigation has gone into analysis of power distribution between the driving wheels. Distribution of power among the driving wheels has been shown to have a significant effect on vehicle operating characteristics for a given set of operating conditions and total power supplied to the wheels. Wheel power distribution is largely a function of the design of the driveline power dividing units (PDUs). In this paper, 6×6/6×4 terrain truck models are analyzed with the focus on various combinations of PDUs and suspension systems. While these models were found to have some common features, they demonstrate several different approaches to driveline system design.