Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Modeling of an Excavator System - Semi Empirical Hydraulic Pump Model

2011-09-13
2011-01-2278
This paper describes the preliminary results of a study focused on the semi empirical modeling of an excavator's hydraulic pump. From the viewpoint of designing and tuning an efficient control system, the excavator is a very complex nonlinear plant. To design and tune such a complex control system an extremely good nonlinear model of the plant is necessary. The problem of modeling an excavator is considered in this paper; a nonlinear mathematical model of an excavator has been developed using the bond graph methodology realized in the AMESim® simulation software to replicate actual operating conditions. The excavator model is described by two models: a hydraulic model and a kinematic model. At this stage of research the hydraulic model deals solely with the model of the main hydraulic pump, which has been conceived as a semi empirical model.
Technical Paper

Modeling Simulation and Experimental Verification of an Excavator Hydraulic System - Load Sensing Flow Sharing Valve Model

2012-09-24
2012-01-2042
This paper describes the results of a study focused on the mathematical modeling of an excavator hydraulic system. From the viewpoint of designing and tuning an efficient control system, the excavator is a very complex nonlinear plant. To design and tune such a complex control system an extremely good nonlinear model of the plant is necessary. The problem of modeling an excavator is considered in this paper; a nonlinear mathematical model of an excavator has been developed using the AMESim® modeling environment to replicate actual operating conditions. The excavator model is described by detailed models of the main pump, valve block and kinematic model. The objective of this research is to develop a complete simulation model of an excavator with the capability of reproducing the actual characteristics of the system. The model could then be used as a platform to facilitate the study of alternate control strategies towards energy efficient systems and new controller designs for HIL.
X