Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Commercial Vehicles Muffler Volume Optimization using CFD Simulation

2014-09-30
2014-01-2440
In today's competitive world, vehicle with light weighting is the most focused area. Vehicle light weighting can be done either by using light weight materials or by reducing the size of the existing components. In present paper later approach of vehicle light weighting is followed. It will help in design lay outing and reduce weight will add benefit to Fuel Efficiency (FE) too. Scope for light weighting is identified in exhaust system where muffler volume is optimized using Computational Fluid Dynamics (CFD) commercial tool FLUENT™. The back pressure, exhaust gas temperature, sound noise level & sound quality are chosen as design verification parameters. The muffler volume is reduced by 14.1%; resultant system become 14.1% compact with 2% lighter weight. Initially CFD analysis is performed on existing muffler and correlated with available test results. Accordingly parameters like pressure drop and flow induced noise are set as target values for new design.
Technical Paper

Fuel Efficiency Improvement of Commercial Vehicle by Investigating Drag Resistance

2015-09-29
2015-01-2893
Market driven competition in global trade and urgency for controlling the atmospheric air pollution are the twin forces, which have urged Indian automobile industries to catch up with the international emission norms. Improvement in the fuel efficiency of the vehicles is one way to bind to these stringent norms. It is experimentally proven that almost 40% of the available useful engine power is being consumed to overcome the drag resistance and around 45% to overcome the tire rolling resistance of the vehicle. This as evidence provides a huge scope to investigate the influence of aerodynamic drag and rolling resistances on the fuel consumption of a commercial vehicle. The present work is a numerical study on the influence of aerodynamic drag resistance on the fuel consumption of a commercial passenger bus. The commercial Computational Fluid Dynamics (CFD) tool FLUENT™ is used as a virtual analysis tool to estimate the drag coefficient of the bus.
X