Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Driveline Optimisation of a Heavy Duty Truck

2007-08-05
2007-01-3698
Fuel consumption for heavy trucks depends on many factors like roads, weather, and driver behavior that are hard for a manufacturer to influence. However, one design possibility is the power-train configuration. Here a new simulation program for heavy trucks is created and the configuration of the power-train that gives the lowest fuel consumption for each transport task is selected based on the simulation results. In this work, the operational conditions have been considered i.e. load, pavement, transmission efficiency and the building characteristics of the engine map, transmission, frontal area, tire. In this paper, we present a simulation software that enables a vehicle manufacturer or a customer to choose the right driveline for the customized application, depending on the acceleration and the fuel economy needs.
Technical Paper

Heavy Duty Truck Driveline Optimization using Six Sigma Methodology

2008-10-07
2008-01-2661
Fuel consumption for heavy trucks depends on many factors like roads, weather, and driver behaviour that are hard for a manufacturer to influence. However, one design possibility is the power-train configuration. In this paper, driveline of a heavy-duty truck is optimised using the six-sigma methodology. The focus of the task is selection of a power train configuration that gives the lowest fuel consumption for each transportation task. To reduce fuel consumption, it is important to choose a powertrain combination (gearbox, rear axle, tire dimension) that allows efficient use of the engine. Such an optimization of powertrain configuration is a complex task, but current simulation techniques provide means to reduce costly testing by replacing it partly with analysis. The DMAIC (Define, Measure, Analyze, Improve & Control) steps are followed to generate alternate solutions of the descriptive problem.
Technical Paper

Bus Body Modularity - Design and Manufacturing

2014-04-01
2014-01-0356
‘To achieve more from less’ has been the oft-quoted phrase in auto industry for quite some time. This philosophy has many analogies like fuel efficiency, modularity, weight reduction, alternative fuels etc. Of these ‘modularity’ is seen as an effective tool, especially for automotive OEMs catering to a wide portfolio of similar products. This paper discusses the implications of modularization on a passenger bus OEM, by taking the ‘bus super structure’ as a test case. The modularized bus structure is compared with the conventional structure for design strength, safety, weight and more importantly manufacturing flexibility. The challenges faced in each of these aspects are discussed. From the study it was understood that the task of manufacturing body modules and interfaces is complex and it calls for a complete revamp of existing fixtures, material handling equipment and even the prescribed tolerances.
X